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Abstract – It is well known that the output signals measured by an 
automatic test equipment (ATE) system are not only due to the 
device-under-test (DUT), but also due to the test path. For 
example, if the intersymbol interference (ISI) due to the test path 
is not negligible, then the performance of the DUT can be grossly 
underestimated. In this paper, we propose a generic model for both 
the test path and the DUT. By using a cascading model, we will 
illustrate the measured signals due to the test path and DUT 
combined, in contrast to the measured signals due to the DUT 
alone. We will investigate both the effect of the limited bandwidth 
and the effect of ringing. We will illustrate the eye-diagrams of the 
DUT, and conceptually identify and separate the impact of the test 
path on the eye-diagrams. 
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I. INTRODUCTION 

For high-speed datacom devices, signal integrity has become 
an increasingly important issue. In a typical automatic test 
equipment (ATE) system, the measured signals are not only 
due to the device-under-test (DUT) that is of interests to us, 
but also due to the test path, i.e., the pin electronics (PE), the 
cables, the pogo blocks, the load board and etc [1]. With very 
tight performance requirements, the degradation of the signal 
integrity due to the test path rather than the DUT itself is no 
longer negligible, therefore serious effort is required to 
isolate and measure the true performance of the DUT. For 
example, with a very tight jitter budget, we no longer have 
the luxury of measuring the jitter performance due to both the 
test path and the DUT and reporting the results as the jitter 
performance of the DUT. Because many good DUTs will fail 
due to the excessive jitter introduced by the test path. 

Several authors have addressed the issues of simulating and 
characterizing the test path [1] [2] [3], many times are also 
referred to as device interface (DI), the signal delivery chain. 
The modeling was generally limited to a single component 
along the test path, and the characterization of the overall test 
path was mainly through measurement. A linear system 
response approach was recently presented to model the 
overall response for the test path to initiate the discussion on 
the effect of the limited frequency bandwidth [1], however 
the effect of ringing was not addressed. Because it was 
mostly based on simple one-pole model, and only timing 
errors through the step response analysis (rise/fall times) were 
illustrated.  

In this paper, we propose a much more generic model for 
both the test path and the DUT. By using a cascading model, 
the measured signals can be characterized as a convolution of 

the input signal, the impulse responses of the components 
along the test path, and the impulse response of the DUT. In 
frequency domain, cascading is simply multiplying the 
transfer functions of each stage. 

We will examine several higher order systems (the order of 
the system is determined by how many poles) with zeros and 
multiple poles, we will examine not only the magnitude 
response but also the phase response of the transfer function. 
The eye-diagrams will be presented to estimate not only the 
timing errors but also the amplitude errors, and finally, by 
allocating certain zeros and poles to the DUT with all the rest 
to the test path, we can conceptually identify and separate the 
impact of the test path on the eye-diagrams. We will also 
investigate several different datacom patterns including the 
K28.5, PRBS and CJTPAT to examine the intersymbol 
interference (ISI). 

For convenience, throughout this paper, we adopt the 
normalized time base, i.e., 1 unit interval (UI) based on the 
datacom bit rate, and therefore the normalized frequency unit 
is 1/UI. The peak-to-peak reference voltage is also 
normalized to be one. 

II. THEORY 

a). A Typical ATE Setup: 

 

Fig. 1 shows a typical ATE setup for standard functional 
tests, where )(tvi  is initial stimulus from the ATE, and 



)('''' tvo  represents the final ATE measured signal. It is 
important to notice that there are several test points between 
the PE card and the load board/DUT interface where we can 
apply a test and measurement instrument to measure the 
intermediate signals. 

Consider an ideal case, i.e., the impact of the test path is 
negligible, then we can obtain, 

)()()( tvthtv osysi =⊗   (1) 

where )(thsys  denotes the impulse response of the DUT that 

is of interest to us, and ⊗  denotes a time domain 
convolution.  

If we denote the impulse response of the PE driver as )(thsrc  
and the impulse response of the media (can be connector, 
cable and pogo blocks lumped together) as )(thmed , then we 
can write, 

)('')()()()( tvthththtv osysmedsrci =⊗⊗⊗  (2) 

For simplicity, we consider )('' tvo  rather than )('''' tvo  as 
the measured signal to include only one pass of the impact of 
the test path. Clearly, 

)('')()()( tvththtv omedsrco =⊗⊗  (3) 

and  

)('')()('' tvthtv osysi =⊗   (4) 

We therefore define the impulse response of the test path as, 

)()()( ththth medsrc ⊗=   (5) 

If we adopt the bilateral Laplace transform to connect the 
time domain and the frequency domain, i.e., 









=

=

∫
∫

+

−

∞

∞−

−

ωσ

ωσπ
j

j

st

st

dsesH
j

th

ROCdtethsH

)(
2
1)(

   ,)()(
 (6) 

where 1 , −=+= jjs ωσ  is complex, which defines the 
complex S-plane. The transfer function of the test path is, 

)()()( sHsHsH medsrc=   (7) 

b) A Generic Transfer Function Model: 

Consider a linear time invariant (LTI) system that can be 
specified with constant coefficient linear differential 
equations. In S-plane, its transfer function can be represented 
in a rational form, i.e., 
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where N and M denote the numbers of poles and zeros, 
respectively, and this is an N th-order system.  

Several observations can be made for this generic rational 
form representing the transfer function of a physically 
realizable system: 

(1) It must be causal, i.e., the region of convergence (ROC) 
is right to the rightmost pole [4]; 

(2) It must be stable, i.e., all the poles are located in the left 
half of the S-plane (not including the imaginary axis), 
and the number of poles is greater than or equal to the 
number of zeros [4]. 

(3) As a special example, if the number of poles is equal to 
the number of zeros, i.e., MN = , then we can rewrite 
Eq. (8) as, 
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It is well known that the extra constant K in the 
frequency domain will induce a perfect Dirac delta 
function (as the impulse response) and a perfect step 
function (as the step response) in time domain. However, 
this scenario is of little interest to us, and we will only 
consider the cases in which the number of poles is 
greater than the number of zeros. 

(4) For transfer functions that behave like a low-pass filter 
with fairly flat response in the pass band, we further limit 
that the poles and zeros cannot be located on or very 
close to the imaginary axis. 



Assuming 0≠np  and 0≠mz , and the normalization 
constant K can be defined as, 
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In an ATE configuration, we can define this transfer function 
to be the transfer function due to both the test path and the 
DUT, i.e., 
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The advantage of using such a formulation is that we can 
have a rational model with associated poles and zeros for 
each component along the test path, a rational model with 
associated poles and zeros for the DUT, and the combined 
transfer function (after multiplication) is still rational. 

If we notice that each stage itself is a physically realizable 
system, it is reasonably safe to assume that we will have 
many more poles than zeros in the combined transfer 
function. For illustration purpose, we will only consider the 
transfer functions that only have poles (no zeros). They are 
the simplest and yet very representative. 

 
III. BUILDING BLOCKS 

 
In this section, we will review several fundamental rational 
models that will be considered as “building blocks”. We will 
examine their magnitude/phase responses in frequency 
domain and their impulse/step responses in time domain.  

We will focus on the denominator of the rational model 
shown in Eq. (8). There are typically two scenarios that we 
must consider:  

(1) If there is single pole, then it must be real and negative, 
and we have a factor of )( nps −  in the denominator 
(the 1st-order model); 

(2) If there are complex poles, then they must come as a 
complex conjugate pair, and we have a factor of 

22 2))((
nn

sspsps nn ωζω ++=−− ∗  in the 

denominator, where * denoted complex conjugate, nω  is 
the undamped natural frequency and ζ is the damping 
ratio (the 2nd-order model). 

Therefore we choose these 1st-order and 2nd-order models as 
our basic “building blocks”. 

a). The 1st-order Rational Model 

This is the classic test-book model that was the focus and 
base of many previous papers [1] [2] [3]. 

Consider a one-pole rational model, i.e., 
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where )(tψ  and )(tγ denote the impulse and step responses, 
respectively, and npK −= . 

Following the classical RC implementation of this transfer 
function, the time constant can be written as )(

1
np−=τ . The 

3 dB cutoff frequency can be written as,  

ππτ 22
1

3
n

dB
pf −==   (11b) 

and the break frequency is at dBf32π . Beyond this frequency, 
the magnitude response follows the “20 dB per decade” 
asymptote. The “rule of thumb” for the rise time is [1] [2]: 
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We have chosen 5−=np . Fig. 1 shows the frequency 
domain magnitude and phase responses (Bode plot), while 
Fig. 2 shows the time domain impulse and step responses, 
respectively. 

With the 3-dB cutoff frequency at 0.80, the rise times 10-90% 
of 0.44 and 20-80% of 0.28 obtained in the simulation 
(shown in Fig. 2) agree with those can be obtained by the 
“rule of thumb” [1] [2]. 



 
Figure 1. A one-pole model: Magnitude and phase responses in 

frequency domain. 

 
Figure 2. A one-pole model: Impulse and step responses in time 

domain. 

B. The 2nd-order Rational Model 

 

Figure 3. A two-pole model (under damped, critically damped and 
over damped cases): Magnitude and phase responses in frequency 

domain 

This is a model of great interest because it starts to shed a lot 
of insight of the complexity of a real physical system.  

Consider a two-pole rational model, i.e., 
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where )(tψ  and )(tγ  denote the impulse and step responses, 
respectively. kn ppK =  and 

kn ppA −= 1 . 

Following the classical RLC implementation of this transfer 
function, the undamped natural frequency can be written as 

knn pp=ω  and the damping ratio can be written as 

n

kn pp
ωζ +−= . We can also define the quality factor as 

ζ2
1=Q . It is important to notice that the 3 dB cutoff 

frequencies are dependent on the damping ratio, while the 
break frequency is at nω , which is independent of the 
damping ratio. Beyond this frequency, the magnitude 
response follows the “40 dB per decade” asymptote. If we 
can break the 2nd-order model into two stages of cascading 
1st-order model, then we have the “rule of thumb” based on 
the rise time of each stage (as a 1st-order model). If we denote 
the two cascading stages as n and k, then the “rule of thumb” 
for the rise time is [1] [2]: 

22
knnk trtrtr +=   (12b) 

This rise time estimation is applicable to both the 10-90% rise 
time and the 20-80% rise time. On the other hand, if we 
cannot break the 2nd-order model into two stages of cascading 
1st-order model, then there is no known simple ‘rule of 
thumb” for the rise time. 

We can choose 2
1=ζ  and 5=nω  ( )31(2

5 jpn +−=  and 

)31(2
5 jpk −−= ) for the under damped case; 1=ζ  and 

5=nω  ( 5−== kn pp ) for the critically damped case; and  



Table 1. Rise time estimations for basic “building blocks” 
 

1st-order Model 2nd-order Model 
 Under Damped Critically Damped Over Damped  

Numerical 
Estimation “Rule of Thumb” Numerical 

Estimation “Rule of Thumb” Numerical 
Estimation “Rule of Thumb” Numerical 

Estimation “Rule of Thumb” 

Rise Time (UI) 
10-90% 0.44 0.44 0.41 N/A 0.67 0.67 1.16 1.16 

Rise Time (UI) 
20-80% 0.28 0.28 0.28 N/A 0.43 0.43 0.73 0.73 

 

2
3=ζ  and 5=nω  ( )53(2

5 +−=np  and 

)53(2
5 −−=kp ) for the over damped case. Fig. 3 shows 

the frequency domain magnitude and phase responses (Bode 
plot), while Figures 4, 5, and 6 shows the time domain 
impulse and step responses for the three different cases, 
respectively. 

For the under damped case, clearly, *
nk pp = . The two poles 

are inseparable, i.e., it cannot be treated as two cascading 
stages of 1st-order model. This type of coupling is essential to 
the ringing  (over-shoot, under-shoot) behaviors that we have 
observed. The rise times 10-90% of 0.41 and 20-80% of 0.28 
obtained in the simulation (shown in Fig. 4) cannot be 
obtained by the “rule of thumb” [1] [2]. Therefore, this case 
represents a true 2nd-order “building block”. For the rest of 
this paper, we shall consider only the true complex conjugate 
pair of poles for the 2nd-order model. For the critically 
damped and over damped cases, it is clear that the poles are 
actually real, whether they are equal or not. These cases can 
be treated as cascading two 1st-order rational models; 
therefore it is the 1st-order model that constitutes the 
“building blocks” here. The rise times 10-90% of 0.67 and 
20-80% of 0.43 obtained in the simulation for the critically 
damped case (shown in Fig. 5) and the rise times 10-90% of 
1.16 and 20-80% of 0.73 obtained in the simulation for the 
over damped case (shown in Fig. 6) agree with those can be 
obtained by the “rule of thumb” [1] [2]. 

Table 1 summarizes the rise time estimations associate with 
“the building blocks”. We have investigated two basic 
“building blocks”: the 1st-order model and the true 2nd-order 
model (the under damped case). Their numerical examples of 
have very similar rise times. We will treat the test path using 
one of these two models: the 1st-order model can be used to 
illustrate the effect of the limited bandwidth, while the 2nd 
order model can be used to illustrate the effect of ringing. 

IV. RESULTS 

In this section, we will examine a 2nd-order case and a 3rd 
order case that can be broken into lower order “building 
blocks”. We will examine the eye-diagrams for these cases  

Our goals are: (1) To illustrated that these models can be 
represented using the building blocks presented in the 
previous section; (2) If we allocate certain poles and zeros to 
the transfer function of the DUT that is of interested to us, we 
can illustrate the impact of the test path on the eye-diagrams 
by allocating all the other poles and zeros to the transfer 
function of the test path. 

 

Figure 4. An under damped two-pole model: Impulse and step 
responses in time domain. 

 
Figure 5. A critically damped two-pole model: Impulse and step 

responses in time domain. 



 

Figure 6. An over damped two-pole model: Impulse and step 
responses in time domain. 

a). The DUT 

For simplicity, we will assume that the DUT can be 
characterized as a 1st-order model, i.e., a one-pole low-pass 
filter. 

Following the discussion on the 1st-order model in the 
previous section, we shall adopt the numerical results in Fig. 
2 to characterize the DUT, and the corresponding eye-
diagram is illustrated in Fig. 7. We observe very minimum 
timing and amplitude jitter. This will serve as a benchmark 
(the baseline) to illustrate the extra jitter and eye closure 
caused by the test path rather than the DUT alone. 

The eye-diagrams presented here are all using the K28.5 bit 
pattern. The input data pattern is assumed to be ideal; i.e., the 
rise and fall times in the input data pattern are zero. We will 
consider different bit patterns in the next section. 

 
Figure 7. A one-pole model: Eye-diagram. 

b). Test Path Impact: Limited Bandwidth 

For the purpose of examining the effect of the limited 
bandwidth, we can model the test path as a one-pole low-pass 
filter.  

We choose the first case such that the bandwidth of the test 
path is less than that of the DUT. The pole is located at 

75.3−=kp . Fig 8 shows the combined eye-diagram due to 
both the test path and the DUT. We observed significant eye 
closure. The timing jitter increased by more than ten fold and 
the amplitude jitter more than doubled. 

Now we choose the second case such that the bandwidth of 
the test path is greater than that of the DUT. The pole is 
located at 25.6−=kp . Fig 9 shows the combined eye-
diagram due to both the test path and the DUT. We observed 
slight eye closure, which is in line with the slight increase of 
both timing and amplitude jitter. 

This example serves to illustrate the effect of limited 
bandwidth of the test path. One of the fundamental design 
requirements is that the test path should have sufficient 
bandwidth to accommodate the intended DUTs. In both 
cases, we observed non-negligible timing and voltage ISI due 
to the test path rather than the DUT, therefore, the 
identification and separation of the test path impact is of 
critical importance in these cases. 

c). Test Path Impact: Ringing 

It is known from the previous section that we have to use the 
2nd-order model in order to introduce the ringing behaviors. 
We can model the test path as a two-pole low-pass filter. 

 
Figure 8. The combined eye-diagram: Test path as a one-pole low-

pass filter  

 



Table 2. K28.5 pattern ISI estimations due to DUT and test path 
  

Effect of Limited Bandwidth 
Smaller Test Path Bandwidth Larger Test Path Bandwidth Effect of Ringing 

 DUT 
(Benchmark) Combined Test Path 

Induced Combined Test Path 
Induced Combined Test Path 

Induced 
Timing 
ISI (UI) 0.0014 0.015 0.014 0.0037 0.0023 0.0013 -0.001 

Voltage 
ISI 0.041 0.11 0.11 0.066 0.025 0.095 0.07 

 

 
Figure 9. The combined eye-diagram: Test path as a one-pole, 

low-pass filter 

 
Figure 10. The combined eye-diagram: Test path as a two-pole, 

low-pass filter. 

We choose a case such that 1=Q . The poles are located 

at: )31(2
5 jpk +−=  and )31(2

5* jpk −−= . Fig 10 
shows the combined eye-diagram due to both the test path 
and the DUT. The timing and amplitude jitters are 
estimated to be 0.0013 and 0.094, respectively. 

This example serves to illustrate the impact of the test path 
ringing. In this case, the ringing is small enough so that it 
does not clearly impact the 50% cross points, we observed 
increase of the amplitude ISI, but relatively small change 
of the timing ISI. 

Table 2 summarizes the ISI estimations due to the DUT 
and the test path. In fact the last case demonstrated a 
reduced timing ISI, which actually hinted the principle of 
the compensation circuitry. 

V. DISCUSSION 

Consider an LTI system. It is apparent that there are three 
factors that will affect the output data ISI: (1) Input data 
pattern zero/one run length (the source), (2) system 
impulse/step response rise/fall time (the system 
bandwidth), and (3) the settling time of the system 
impulse/step response (due to the system’s stability or 
instability, not applicable to the 1st-order rational model). 

If there is no zero/one run length variation, e.g., in a Clock, 
there is only one zero/one run length, i.e., 1, we may only 
observe duty cycle distortion, but no ISI at all. Typically, 
the rise/fall times are predominantly determined by the 
system bandwidth. For a certain data rate, the rule of 
thumb is that the system bandwidth should be at least 0.75-
0.78 of the inverse of the UI, in order to avoid excessively 
slow rise/fall times. If the rise/fall time is shorter than 1 
UI, it is fairly safe to say that the rise/fall time does not 
cause any ISI; if the rise/fall time is longer than 1 UI, then 
it will start to contribute to the ISI caused by relatively 
shorter zero/one length in a data pattern. If the system has 
a fairly long settling time (more than 2-3 UIs), then we 
will see the ISI caused by the longer zero/one run length in 
the data pattern. 

In short, we can define a system memory length to be the 
time from the start of the impulse/step response to the end 
when the impulse/step response fully settles. Clearly, both 
rise time and settling time contribute the system memory 
length. One example is that, if the system has a memory 
length of 2 UIs, then we will never see the ISI caused by 
zero/one run length beyond two UIs. 



 

Figure 11. Test path as a two-pole, low-pass filter. 

 
Figure 12. The combined eye-diagram: Test path as a two-pole, 

low-pass filter. 

By examining the impulse/step response shown in previous 
sections, it is clear that their memory length is only around 
2 UIs, i.e., the responses pretty much settle after two UIs. 
We would like to increase the system memory length and 
study the eye diagrams for three data patterns: K28.5 with 
zero/one run length up to 5, PRBS 210-1 with zero/one run 
length up to 10, and CJTPAT with zero/one run length up 
to 5. If we would like to maintain sufficient bandwidth, 
then we have to adopt to increase the settling time 

Consider now the test path as a two-pole low pass filter. 
This time we choose 5=Q in order to increase the settling 
time, hence to increase the system memory length. The 
purpose is to evaluate the ISI due to much longer zero/one 

run length, e.g., up to 10. The poles are located at: 
)1131(2

1 jpk +−=  and )1131(2
1* jpk −−= .  

Figures 13-15 show the combined eye-diagram due to both 
the test path and the DUT for three different data patterns. 
Respectively. For the K28.5 pattern, the timing and voltage 
jitters are estimated to be 0.14 UI and 0.86, respectively; 
for the PRBS 210-1 pattern, the timing and voltage jitters 
are estimated to be 0.26 UI and 0.91, respectively; and for 
the CJTPAT pattern, the timing and voltage jitters are 
estimated to be 0.26 UI and 0.91, respectively; 

 
Figure 13. The combined eye-diagram for K28.5: Test path as a 

two-pole, low-pass filter. 
 

 
Figure 14. The combined eye-diagram for PRBS 1210 − : Test path 

as a two-pole, low-pass filter. 

 



 
Figure 15. The combined eye-diagram for CJTPAT: Test path as a 

two-pole, low-pass filter 

VI. CONCLUSION 

We have illustrate a more generic model for the ATE test 
path and DUT. We demonstrated two basic “building 
blocks”, one is a 1st-order model, the other is an under 
damped 2nd-order model. 
 
We not only investigated the effect of the limited 
bandwidth based on the 1st-order model; we also 
investigated the effect of ringing based on the 2nd-order 
model. 
 
We examined eye-diagrams due to both the test path and 
the DUT for several different data patterns, and pointed 
out that the system memory length can significantly impact 
both the timing ISI and voltage ISI.  
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