ITC 2004

Will "Heisenberg Uncertainty Principle" Hold For Designing and Testing Multiple GB/s ICs?

Dr. Mike Li Wavecrest

WAVECREST

Outline

- Implications of low-cost, high performance, and, high volume
 - I.) lower cost
 - II.) design margin
 - III.) process technology
 - IV.) BER $\leq 10^{-12}$
- Summary and conclusion

I. Lower Cost Implications for Jitter

Lower Cost

- Cheaper component with a lot of intrinsic jitter
 (i.e, oscillator, clock generator, CMOS process, ect.)
- Limited power prevents driving fast edge

Margin" Left

PCI Express System Jitter Budget

Components *barely* meet the system jitter requirements

Budget is so tight that non-linear convolution based system jitter distribution method needs to be used replacing linear sum method

Jitter Dis	Min Rj rms (ps)	Max Dj (ps) P-P	Tj at BER 10 ⁻¹² (ps)
Тх	2.8	60.6	100
Ref Clock	4.7	41.9	108
Media	0	90	90
Rx	2.8	120.6	160
Linear Total Tj: Root Sum Square (RSS) Total			458
Tj:			399.13

III. CMOS Process Implications

- Process variation -> wide range of device parameters -> wide range of jitter distribution (i.e., PLL 3 dB can vary up to 12±10 MHz, corresponding to a few 10ps jitter range)
- Multiple channel (up to ~ 100) on a single chip intensifies the crosstalk
- Higher corner frequency of the 1/f noise for small feature size CMOS process technologies

IV. BER=10⁻¹² to 10⁻¹⁵

- JNB is a statistical process
- 10¹² to 10¹⁵ jitter and/or noise samples
- Very long (many hours) in-situ design simulation and/or testing time
- What price do we pay if we shortcut the statistical sample:?

Liability and/or yielding !!!

Summary and Conclusion

- Penalty price will apply if JNB test is skipped from from design to manufacture given the low cost, high performance (BER=10⁻¹² - 10⁻¹⁵), and high volume requirements for Gbps ICs/systems.
- "Heisenberg Uncertainty Principle" will continue hold for JNB test

_