ICCD 2003

Paradigm Shift For Jitter And Noise In Design And Test > 1 Gb/s Communication Systems

Mike Li and Jan Wilstrup
Wavecrest

Purposes

- Illustrate the shortfalls of simple parametric based jitter/noise analysis methods (Peak-to-Peak or RMS only)
- Introduce the PDF and CDF based statistical jitter/noise analysis methods
- Introduce the jitter/noise transfer function and its role in serial data link
- Apply both statistical analysis and transfer function for jitter, noise, and BER in modeling and testing > 1 Gb/s systems

Outline

- Overview of jitter and noise basic
- Shortfalls for parametric peak-to-peak
- PDF and CDF functions jitter, noise, and BER
- Overview of serial communication systems
- Jitter/noise transfer function
- Methods for estimating and testing jitter, noise, and BER
- Conclusion

Jitter And Noise Basics

- Timing Jitter : Any deviation from ideal timing
- Amplitude Noise: Any deviation from ideal amplitude
- Timing jitter occurs when there is an edge transition
- Amplitude noise is a constant activity

Jitter And Noise Viewed From Signal Theory

- Jitter/noise is a statistical process
- Jitter/noise has a distribution
- Jitter/noise has many different components
- Jitter/noise can only be completely quantified by its PDF !!!

Jitter Classification Scheme (Statistical Based)

BU: Bounded uncorrelated

Relationship Between Total PDF And Component PDFs: Convolution

An example for timing jitter PDF

$$p_{TJ}(t) = p_{RJ}(t) * p_{DJ}(t)$$

$$= \int_{-\infty}^{\infty} p_{DJ}(\tau) p_{RJ}(t - \tau) d\tau$$

Why *Deterministic* Parametric (i.e, Peak-To-Peak or RMS) No Longer Sufficient?

- Peak-to-peak or RMS alone cannot determine a general PDF
- Peak-to-peak will be an unstable and size sample size dependent estimation in the presence of random component
- RMS will be an *inaccurate* estimation for a Gaussian random in the presence of deterministic component

A Peak-To-Peak Shortfall Case Study

Sample Size Dependency

0

A RMS Shortfall Case Study

RMS ≠ RJ sigma

$$RMS = \sqrt{\frac{1}{N-1} \sum_{n=1}^{N} (\overline{\Delta t} - \Delta t_i)^2}$$

$$> \sigma$$

10

A Deterministic And Random PDF Estimation Method: TailFit (Patented)

- Total jitter PDF = DJ PDF * RJ PDF
- RJ PDF is a Gaussian

$$p(\Delta t) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(\Delta t - \mu)^2}{2\sigma^2}}$$

Tail parts of distribution preserve information on RJ process.

1.1

What Does The "TailFit" Offer?

- RJ PDFS
- DJ PDF (via deconvolution)
- Subspace statistical parameters

DJ PDF Via Deconvolution

A Jitter/Noise Spectrum Estimation Method: Autocorrelation (Patented)

$$PSD(f) = FFT(c - 2 * Rxx(\Delta t(n)))$$

1.4

What Does The "Autocorrelation" Offer?

- RJ PSD
- PJ PSD
- DDJ (DJ without PJ and BUJ) PSD

Jitter And Noise In One View: Eye-Diagram

Volts/Div: 100mV Vot.set: 9mV Time/Div: 50ps Toffset: 28,44ns

Timing jitter pdf

Amplitude noise pdf

Jitter, Noise, And BER

17

Jitter, Noise, And BER Cont...

- BER: metric for overall system performance
- BER: CDF from jitter and noise PDFS

$$BER(t_s) = CDF(t_s) = \frac{1}{2} \left[\int_{t_s}^{\infty} P_{tl}(\Delta t) d(\Delta t) + \int_{-\infty}^{t_s} P_{tr}(\Delta t) d(\Delta t) \right]$$

1.0

A Serial Data Communication System

10

A PLL Frequency Response Function

Receiver Jitter Transfer Function

A "difference" function

What Does A Difference Function Mean?

- Jitter is referenced to a recovered bit clock
- Receiver has a jitter transfer function
- "Intrinsic" jitter referenced to an ideal bit clock is not the jitter "seen" by the receiver
- BER of the system should be estimated based on jitter "seen" by the receiver

Jitter Transfer/Tolerance Functions For Data Recovery

What Constitutes A Valid Jitter Estimating/Testing Method?

- Estimate the jitter as the receiver "sees" !!!
- CR/PLL and difference functions or their equivalents are required

Compliance Estimating/Testing:Total Jitter And BER Function

Total jitter = UI – eye opening @ 10⁻¹²

Method For Serial Links

Estimating/testing total jitter PDF via an appropriate bit clock reference

Estimating/Testing BER function to < 10⁻¹²

Estimating/Testing total jitter

@ BER = 10⁻¹² or smaller

Pass/Fail

Jitter Transfer Function For PCI Express

System block diagram for common clock mode

Jitter Transfer Function For PCI Express Cont..

System Transfer Function Block Diagram

Jitter Transfer Function For PCI Express Cont..

Math Relationships

$$H_t(s) = (H_1(s) - H_2(s)) \cdot H_3(s)$$

$$Y(s) = H_t(s) \bullet X(s)$$

30

Summary And Conclusion

- Deterministic parametric methods for jitter and noise no longer sufficient (e.g., Peak-to-Peak)
- Statistical functional (PDF/CDF) methods are required for jitter, noise, and BER estimation/test
- "Tailfit" offers deterministic and random PDF/CDF estimation/test
- "Autocorrelation" offers PSD for periodic and random components
- Transfer function is required in estimating relevant jitter, noise, and BER for the system
- Statistical PDF/CDF + transfer function gives a complete and accurate system performance estimation/testing

