

A beginner’s reference guide

1 Introduction
The Wavecrest SIA-3000 and GigaView™ software have the ability to run automated
tests or control the SIA remotely. There are a number of methods to achieve this:
Remote GigaView™, LabVIEW™, VisualBasic Macros, Production API (PAPI), and
GPIB command sets.

This paper is divided into sections describing the purpose and general implementation
of each method. Additionally, example code is provided and some general applications
of each implementation are described. It is beyond the scope of this paper to provide
command references/definitions for all tools, commands or structures.

This paper should provide the reader with the knowledge to be able to choose the most
appropriate method taking into consideration, test times, programmer’s experience or
ease of use and application (lab or production). The code examples in this paper are
mostly limited to basic clock measurements such as a period or statistics resulting from
a histogram of period measurements.

Each approach has advantages or disadvantages
depending on the situation in which the technique will
be used. For example, a low level GPIB command
set may require more time to understand and
program—a negative—but it provides extremely fast
measurements which are used in a production
environment—a benefit. On the other hand Visual
Basic Script Macros provide ease of use from the
front panel, but would not typically be used in a
production environment.

Reference Documents:
• GigaView Software, see “SIA-3000 User’s Guide and Reference Manual”, Doc# 200053-02 Rev A
• GPIB Command Reference, see “SIA-3000 GPIB Programming Guide”, Doc# 200007-02 Rev A
• LabVIEW Drivers, see “SIA-3000 LabVIEW Driver Reference Guide”, Doc# 200057-01 Rev A
• Production API, see “SIA-3000 PAPI Programming Guide”
• Detailed descriptions of each measurement tool from the perspective of the GigaView User Interface,

see “GigaView Getting Started Guides”

Automating the SIA Page 1 of 26
©Wavecrest 2005

2 Overview of automation approaches

2.1 Remote GigaView
Remote GigaView has full GUI functionality and familiarity of the SIA-3000 but runs
remotely on a PC or workstation connected by GPIB. This is especially useful when
characterizing a test setup where the SIA is embedded in a rack or ATE system. Using
GigaView Remote, you can verify the signal or break out of a test list and perform full
device characterization. Some SIA-3000 ATE versions do not have a front panel but,
GigaView Remote allows the same functionality of a bench top instrument. This
software is typically used in a lab or an ATE/Production characterization or test
characterization environment.

2.2 Visual Basic Script Macros
Visual Basic Script Macros actually run directly on the SIA-3000 and can control other
instruments over GPIB. They provide an easy way to automate repetitive tests, log
results or save result plots and text as files. Macros will run on both the Windows® and
UNIX versions of GigaView. Macros are typically used in a lab application and cannot
be run from an external instrument.

2.3 LabVIEW Tool Oriented GPIB
LabVIEW drivers are a high level programming language that is built on top of the Tool
Oriented GPIB command set. These drivers allow LabVIEW users to integrate the SIA-
3000 into an automated test environment. While not optimized for speed, the LabVIEW
drivers allow easy integration with other instruments. These drivers are typically used in
a lab or “rack-and-stack” setup.

2.4 PAPI Binary Packet GPIB
Production-API is a high level programming language that is built on top of the Binary
Packet GPIB commands. This API makes it easy to program and use the GigaView
tools or measurements while preserving the speed often required by production, ATE,
or “rack-and-stack” applications.

2.5 Tool Oriented GPIB
Tool Oriented GPIB commands are an expanded set similar to those in the GigaView
software. This command set allows you to perform measurements from all of the tools.
These GPIB commands are parsed into commands that correspond to settings in
GigaView. Consequently, GPIB traffic increases because each tool must be set up by
individual commands rather than the method employed by the Binary Packet. This
implementation is more user friendly than that of the Binary Packet and is the layer that
underlies LabVIEW commands. For more on LabVIEW see section 2.5.

2.6 Binary Packet GPIB
Binary Packet GPIB commands are essentially an expanded set of commands that
allow access to the different tools used in the GigaView Software. This command set
allows you to perform measurements from all of the tools and uses a binary packet
which minimizes GPIB bus traffic. It optimizes speed but is more machine friendly than

Automating the SIA Page 2 of 26
©Wavecrest 2005

user friendly. This GPIB set is not often used in its ‘raw’ form but is the layer that
underlies PAPI. For more on PAPI see section 2.4 and 3.4.

2.7 Basic Measures GPIB
 ‘Basic Measures’ is the lowest level of the three GPIB command sets that can be
implemented. It provides essential signal measurements such as Period/Pk-Pk/1-
sigma/Frequency/and Skew. It is also the fastest method and is used greatly in ATE or
Production environments where very basic tests are required with very little test time.

3 Detailed examples of automation approaches

3.1 GigaView Remote

3.1.1 Reference Materials
• GigaView Software information, see “SIA-3000 User’s Guide and Reference Manual”, Doc# 200053-

02 Rev A
• Gigaview Tools, see “Navigating GigaView” Getting Started Guide

3.1.2 Applications of GigaView Remote
GigaView Remote allows you to have all of the functionality of GigaView, but use a
remote PC or workstation to control the SIA-3000. GigaView Remote is installed on a
computer and requires a valid license (the same as the license of the SIA-3000 to be
controlled). A GPIB card and cable are needed to connect the PC and the SIA-3000.

In a lab, GigaView Remote is useful because data can be directly obtained by your PC
and saved where you are performing signal analysis. In the case that the SIA-3000 is
used for classified research, no results or settings are stored on the hard-drive with
GigaView Remote; it strictly uses GPIB commands to control and configure the
instrument from a host PC. If the SIA is being used in a “rack-and-stack” setup,
GigaView Remote allows you to quickly compare the results of your GPIB or LabVIEW
code with the results from GigaView. This is a great aid in test code characterization
and development.

3.2 VisualBasic Script Macros

3.2.1 Reference Materials

3.2.2 Applications of VB macros
With Macros you can:
Log results from repeated tests on the Summary page.

Automating the SIA Page 3 of 26
©Wavecrest 2005

Open and configure GigaView measurement tools.
Control other devices with GPIB commands.
Save results or plot graphics to a file.

Possible Applications:
Jitter Tolerance Test Set using GPIB to control Pattern Generator, Periodic Jitter and
Random Jitter sources
Characterization Test Set using GPIB to vary device voltage, current or temperature

3.2.3 Results to be expected
One of the most useful capabilities is logging results from repeated tests. With
GigaView, any value or multiple values from the summary pages of any tool can be
logged. The results are annotated to the same summary page.

3.2.4 Example code

The example macro below takes a value from the summary page of the current active
tool and displays that logged value as an Annotation on the summary page. The macro
will run the tool repetitively a set number of times. It prompts you to title the logged
results, choose a number of passes, choose a pause between passes, and choose the
row and column of the value to be logged. When initially running the macro, it is good
to first do one pass to ensure that the correct value is logged. A macro will run to
completion unless additional commands are added for pauses or breaks.

To use this macro:
Open a tool and go to the summary page. (The macro in Example 1 is very general and
does not open or configure a tool. Therefore, it will operate on any active summary
page. The macro can be easily modified to add commands to open a specific tool and
set the view to the summary page)
Load the Macro (in the top menu choose Macro|Load…) and select the macro from the
dialog box.
Or, choose Macro|Edit… and manually type in the macro in the editor.
Decide which value you want from the current active summary page (see Example 2).
Count which row the value is in (the summary page title is Row 0)
Count which column the value is in (The first column with the text is Column 0)
Now run the macro. When prompted, enter the values needed.
Set the “number of passes” to a value of how many runs or cycles of the tool you want.
(Note that because the logging is into the Annotation, there is a limit on how much can
be logged ~32K characters.)
Once the macro is complete, the contents of the summary page can be saved and
pasted into a spreadsheet program.

Automating the SIA Page 4 of 26
©Wavecrest 2005

To Save the results to a file, use the “Save” command and enter a path and filename.

Macro Example Code

Visi.modify command sets the
current tool view to the
summary page. The macro will
not run without the summary
page being active.

Visi.Prompt command asks
user for values.

ROW, COL variables are the
coordinates on the summary
page to be logged.

N is the number of times to run
the test.

Visi.Summary command
chooses a value from the
summary page.

RESULT variable is created
with the logged value and a
time stamp.

Visi.Annotate command puts
the RESULT variable’s contents
into the annotated text on the
summary page.

Dim Visi
Set Visi = CreateObject ("Visi.Application")
Visi.Show
Visi.Maximize
Visi.Modify "Current View", "Summary"
RESULT = Visi.Prompt("Enter title:") & Chr(13) & Chr(10)
COUNT = Visi.Prompt("Number of passes:")
WAIT = Visi.Prompt("Time between passes (sec):")
ROW=Visi.Prompt("Row #?")
COL=Visi.Prompt("Column #?")
For N = 1 to Count
 Visi.SingleStop
 RESULT = RESULT _
 & Visi.SummaryCell (ROW, COL) & Chr(9) _
 & Visi.TimeStamp & Chr(13) & Chr(10)
 Visi.Annotate RESULT
 Visi.Wait WAIT
Next

Example 1. The General Data-Logging Macro Text

So, in the example above the summary page can be automatically saved.

After Next, enter this line:
Visi.Save “C:\Test.txt”
The page will be saved on the C: drive as a text file named ‘Test’.

The Macro example in Example 1 does not open a tool. It assumes a tool is already
open. The ‘Modify’ current view command will change the view of the currently open
active tool to the summary page. The summary page must be active for the
SummaryCell command to work. The example below shows a histogram summary
page to the right. The values of Row and Column chosen follow the example. Counting
starts with zero, and text/blank lines are counted.

Automating the SIA Page 5 of 26
©Wavecrest 2005

Histogram Example
Row 0
Row 1
Row 2
Row 3
Row 4
Row 5
Row 6
Row 7
Row 8
Row 9
Row 10
We want to run the test 3 times, so when
prompted for “number of passes”, enter
3.

We have chosen to log “Accum Period+”.
The coordinates on the summary page
are Row 10, Column 1.
When prompted, enter ROWS = 10,
COLS = 1

The logged results are displayed on the
bottom of the summary page. These
values can be pasted into a spreadsheet
program.

Column 0 Column 1
Histogram Summary
 Chan1
TJ 84.506ps
DJ (pk-pk) 36.218ps
Lt-rmsJ 3.717ps
Rt-rmsJ 3.495ps
Avg-rmsJ 3.606ps
Chi-Squared Lt 4.019386
Chi-Squared Rt 6.376021
Passes 70
Accum Period+ 2.00339ns
Accum Min 1.973799ns
Accum Max 2.039736ns
Accum 1-Sigma 11.217ps
Accum Pk-Pk 65.937ps
Accum Hits 700,000
Latest Period+ 2.003814ns
Latest Min 1.977645ns
Latest Max 2.034498ns
Latest 1-Sigma 10.76ps
Latest Pk-Pk 56.853ps
Latest Hits 10,000
Start Voltage -0.025198V
Stop Voltage -0.025198V

Logged Results: ------------------
2.00339ps
2.00456ps
2.00153ps

Example 2. Example of logged results on summary page

The example could be modified to open specific tools and modify their settings. Often,
the easiest way to do this is to record a macro and then paste the pertinent lines of code
into the example code.

The coordinates on the summary page are static and not relative. Therefore, in some
tools that have variable length summary pages, some values may not be able to be
logged. One example is the High Frequency Modulation tool. This summary page has
a variable length list of all spikes detected on the FFT. Therefore values appearing
below the list will not always be at the same coordinate and will not be able to be
logged. Most tools do not have variable length lists on the summary page.

Automating the SIA Page 6 of 26
©Wavecrest 2005

To make the macro display a more descriptive result, you can add text strings to the
output, which is displayed on the summary annotation. See Example 3 and 4 below.

This example is written to work only with the Known Pattern with Marker tool. It
provides a more descriptive output, and assigns variable names to the coordinates of
interest on the summary page.

Results displayed show
the logged
measurements in a
labeled table.

Variables defined for
the coordinates on the
summary page

Dim Visi
Set Visi = CreateObject ("Visi.Application")
Visi.Show
Visi.Maximize
Visi.Modify "Current View", "Summary"
Count = Visi.Prompt("Number of repeats:")
Result = "TJ=" & Chr(9) & "DCD+ISI=" & CHR(9) & "PJ=" &_
CHR(9) & "DJ=" & CHR(9) & "RJ="& CHR(9) & COUNT &_
" Repeats" & Chr(13) & Chr(10)
For N = 1 to Count
 Visi.SingleStop
TJ = Visi.SummaryCell (3,1)
DCDISI = Visi.SummaryCell (4,1)
PJ = Visi.SummaryCell (5,1)
DJ = Visi.SummaryCell (6,1)
RJ = Visi.SummaryCell (7,1)
 Result = Result _
 & TJ & Chr(9) & DCDISI & CHR(9) & PJ & CHR(9) & DJ &_
CHR(9) & RJ & Chr(9) & "Run #" & N & Chr(13) & Chr(10)
 Visi.Annotate Result
 Visi.Wait 0
Next

Example 3. Known pattern with marker data logging

Automating the SIA Page 7 of 26
©Wavecrest 2005

Known Pattern w/Marker Summary
 Channel1
Per+
TJ 136.135ps
DCD + ISI 117.49ps
PJ (pk-pk) 2.73ps
DJ (pk-pk) 120.221ps
RJ (1-sigma) 1.237ps

Voltage -0mV
Bit Rate 2.499994Gbit/s

TJ= DCD+ISI= PJ= DJ= RJ= Run= 6
137.664ps 118.899ps 2.728ps 121.627ps 1.246ps
137.009ps 117.534ps 2.683ps 120.217ps 1.299ps
136.713ps 117.656ps 2.722ps 120.379ps 1.264ps
136.229ps 117.477ps 2.687ps 120.164ps 1.249ps
136.164ps 117.912ps 2.7ps 120.612ps 1.209ps
136.135ps 117.49ps 2.73ps 120.221ps 1.237ps

Per+ FFT Spikes 2.7ps/1.2GHz
 1.5ps/925.1MHz
 1.4ps/20.1MHz
Example 4. Output displayed by macro in Example 3

Logged results

It is possible to use macros to control other instruments by GPIB. The following
example shows how to sweep the frequency output of a generator and measure the
signal with the SIA-3000.

Automating the SIA Page 8 of 26

Figure 1. Hardware Setup for a Frequency
Sweep

For this example, we want to sweep a
range of frequencies from a signal
generator. The Example will use the
Histogram to measure and log the
period of the clock at each frequency
step. This setup could be used as part
of a tolerance test to add known
amounts of jitter to a device under test.
See Figure 2.

The Hardware Setup
Instruments used are the Wavecrest
SIA-3000, Agilent 8648D Signal Generator.
The Instruments are connected by GPIB. The output of the Device Under Test (DUT) is
summed with the output of the Agilent 8648D. The SIA-3000 must be set to “Controller”
mode in the Edit|configuration menu.

©Wavecrest 2005

The Macro Setup
The macro in Example 5 is written to prompt for a Start Frequency, Stop Frequency,
number of frequency points and the value to be logged.

Row/col set chooses the
value to be displayed.

StartFreq/StopFreq sets the
range to sweep the 8648D.

DevID, GpibSend and
GpibClose send command
to the 8648D

8648D output is
incremented by GPIB

Measurement result is
displayed on summary
annotation

Dim Visi
Set Visi = CreateObject (“Visi.Application”)
Visi.Show
Result = Visi.Prompt(“Enter title:”) & Chr(13) & Chr(10)
Row = Visi.Prompt (“ROW #?”)
Col=Visi.Prompt (“COL #?”)
StartFreq = Visi.Prompt(“Start Frequency:”)
StopFreq = Visi.Prompt(“Stop Frequency:”)
Points=Visi.Prompt (“Points?”)
Increment= (StopFreq-StartFreq)/Points
DevID = Visi.GpibOpen (“ “, 0, 7)
Visi.GpibSend DevID, “FREQ:CW “ & StartFreq & “MHZ”
Visi.GpibClose DevID
For N = 1 to Points
 Visi.SingleStop
DevID = Visi.GpibOpen (“ “, 0, 7)
Visi.GpibSend DevID, “FREQ:CW “ & StartFreq & “MHZ”
Visi.GpibClose DevID
startfreq=startfreq+increment
Result = Result _
 & Visi.SummaryCell (row,col) & Chr(9) _
& Chr(13) & Chr(10)
 Visi.Annotate Result
 Visi.Wait 1
Next

Example 5. Controlling external instruments with GPIB and logging results.

A tolerance test set could be created by modifying this macro and adding additional test
equipment. A general example would be to add jitter to a pattern generator. Using a
random noise source, Random Jitter (RJ) can be added. A sinusoidal source would add
deterministic jitter in the form of periodic jitter.

In Conclusion, VB macros allow you to log results from measurements on the summary
page using the annotation command. The results can be displayed and formatted in an
easy to read format, showing only the results in which you are interested. Finally, using
macros to control other test equipment from the SIA-3000, you can design full bench-
top characterization tests.

Automating the SIA Page 9 of 26
©Wavecrest 2005

3.3 LabView Tool Oriented GPIB

3.3.1 Reference Materials
• LabVIEW drivers, see “SIA-3000 LabVIEW Driver Reference Guide”, Doc #200057-01 Rev A
• GigaView Software information, see “SIA-3000 User’s Guide and Reference Manual”, Doc# 200053-

02 Rev A

3.3.2 Applications of LabVIEW
LabVIEW Drivers are specially formatted National Instruments LabVIEW SubVIs which
permit the developer to send commands to configure, acquire data and download
results from a test instrument. In the case of the SIA-3000, a SCPI Compliant GPIB
interface (Tool Oriented GPIB) is provided as a hardware interface. This is supported
through LabVIEW using its internal VISA (Virtual Instrument System Architecture)
implementation.
Drivers are available for the SIA-3000 to allow remote control of a subset of the
GigaView tools. These drivers follow a standard format which passes around an error
cluster for LabVIEW and GPIB error handling, as well as a VISA session ID which is a
specially formatted string reference containing the GPIB address information.

3.3.3 Results to be expected
The output of the LabVIEW drivers can be similar to that of the output of GigaView tools
from the front panel of the SIA-3000.

3.3.4 Example code
For all of the available tools, the process of controlling the instrument consists of the
following steps:

Front Panel—Note that everything to the left is a configuration parameter (Step
2) and everything to the right is a result statistic (Step 4)

1. Initialization
2. Configuration
3. Acquisition
4. Results Downloading
5. Close Connection

Automating the SIA Page 10 of 26
©Wavecrest 2005

The following is a simple example written in LabVIEW to show these 5 steps and how
one might go about acquiring data from the SIA-3000. There are many calls that must
be made in succession to get the desired data for the different tools. This specific
example is for histogram tool, but the same basic format can be applied to any of the
tools.

Block Diagram – Note that the 5 steps are labeled with the yellow LabVIEW
comment placed above. This shows which calls go with which steps from left to
right.

In this LabVIEW code example, first the SIA-3000 GPIB connection is initialized on
address 5. ID Query and Reset are hard coded to false, so a simple initialization will
occur with no verification. The defaults are set with the second call and initialization for
the Histogram tool is complete.

For the second step, many parameters are wired to additional inputs for the
configuration parameters. All the calls in step 2 do the same thing: configure setup
parameters on the SIA-3000.

The third step consists of one call to the Histogram Acquire driver. This tells the SIA-
3000 to perform a single pass of Data Acquisition. Note: to cycle, this driver may be
placed in a loop that will terminate based on number of iterations, or a TailFit™
completion. This is beyond the scope of a simple LabVIEW example, but in step 4 we
will address a mechanism for determining if a TailFit has been successfully completed.

The fourth step shows the two types of result reporting common to all tools: Plots and
Statistics. This example displays the resulting Accumulated Histogram plot and the
three basic Jitter statistics. Notice that there is a TailFit complete output on the statistics
drivers. Any call to the statistics driver will return this flag indicating TRUE if a TailFit
has been successfully completed and FALSE if it has not. Until a TailFit is completed,
successive calls to the Histogram Acquire driver would be needed in order to get valid

Automating the SIA Page 11 of 26
©Wavecrest 2005

Jitter statistics. For a real world application, an acquisition loop is needed that will
terminate only when a TailFit has been completed.

For more information about LabVIEW, visit the National Instruments website
(http://www.ni.com). And for more information about using the SIA-3000 LabVIEW
Drivers, see “SIA-3000 LabVIEW Driver Reference Guide”, Doc# 200057-01 Rev A.

3.4 PAPI Binary Packet GPIB

3.4.1 Reference Materials
• GPIB Command Reference, see “SIA-3000 GPIB Programming Guide”, Doc# 200007-02Rev A
• GigaView Software information, see “SIA-3000 User’s Guide and Reference Manual”, Doc# 200053-

02 Rev A
• PAPI Command Reference, see “ SIA-3000 PAPI Programming Guide”

3.4.2 Applications of PAPI
PAPI is typically used in ATE or production test applications. It is fast because it is a
layer that is wrapped around the Binary Packet GPIB command set.

3.4.3 Results to be expected
The Histogram tool is used for capturing statistical data on a simple time measurement
such as period, propagation delay, slew rate, pulse width, rise time, fall time, pulse-
width, duty cycle, period jitter, lane-skew jitter and slew rate jitter. Use Adjacent Cycle
Jitter Tool for cycle to cycle jitter and Adjacent Cycle Jitter.

3.4.4 Example code
Measurement Commands, Utility Structures, and Structure Definitions are not covered
deeply in this example. For complete details on using the PAPI commands, refer to the
“PAPI Programming Manual”
This section should provide an idea of the use of PAPI commands.

All measurements are handled in by passing a measurement parameter structure to a
calling function, which initiates the measurement. Section 3.2 of the PAPI manual
outlines the commands that are used to initiate a measurement and to retrieve the data
from the instrument. The commands in Section 3.2 of the PAPI manual are completely
independent of the window to be used and are used with all of the measurement
windows.

The basic process for creating a measurement follows these basic steps:

1. Initialize a window structure. This means that memory must be allocated,
variables declared and the structure set to defaults.

2. Modify any structure elements as needed for the given measurement.
Typical modifications include channel number, pattern file name (if data),
number of measurements and triggering information.

3. Call a measurement command. Use one of the measurement commands
from Section 3.2 and pass it the window structure defined in 1 and 2.

Automating the SIA Page 12 of 26
©Wavecrest 2005

http://www.ni.com/

4. Parse the window structure for the results. Once the measurement is
completed, the command will return any error messages or a
SIA_SUCCESS if measurement was completed successfully.

5. DONE.
If the program is to be done in a production environment, some attention needs to be
paid to the memory handling. In step 1, we allocated memory for the structure. If this is
done repeatedly without clearing the memory, this will result in a memory overflow error
during run time. This can be avoided by either moving the memory declarations to a
section of the program that is executed only once. Be sure to execute an appropriate
FCNL_Clr---- command when the structure is no longer needed. This only needs to be
done once at the end of the program. Alternatively, memory can be allocated and
cleared on a per-run basis although this will have a huge impact on test time.

3.4.4.1 Structure used for Histogram Window
The histogram tool is used for displaying the statistical distribution of a given
measurement. Measurements made with this tool are limited to repetitive signal
measurements such as clock period, duty cycle, pulse width, rise time, fall time,
propagation delay and frequency. This tool is typically used for displaying the statistical
distribution of thousands of measurements. Important distribution parameters can be
calculated based on the data including: RMS, peak to peak, Random Jitter (RJ),
Deterministic Jitter (DJ) and Total Jitter (TJ).

typedef struct
 {
 PARM tParm; //INPUTS
double dUnitInt;
long lPassCnt, lErrProb;
long lTailFit, lForcFit;
long lMinHits;
long lFndEftv;
long lMinEftv, lMaxEftv;
long lAutoFix;

long lGood, lPad1; //OUTPUTS
long lNormCnt;
double dNormMin, dNormMax;
double dNormAvg, dNormSig;
long lPad2;
long lAcumCnt;
double dAcumMin, dAcumMax;
double dAcumAvg, dAcumSig;
long lBinNumb, lPad3;
double dLtSigma[PREVSIGMA];
double dRtSigma[PREVSIGMA];
PLTD tNorm;
PLTD tAcum;
PLTD tMaxi;
PLTD tBath;
PLTD tEftv;
TFIT tTfit;
} HIST;

Automating the SIA Page 13 of 26
EXAMPLE

©Wavecrest 2005

:
#define TRUE 1
static HIST histogram; //declare histogram to be a structure of
 //type HIST
memset(&histogram, 0, sizeof(HIST)); //clear the memory for histogram str.
FCNL_DefHist (&histogram); //set histogram structures to default
 //values
histogram.tparm.lChanNum = 1; //capture waveform on channel 1
histogram.tparm.lFuncNum = FUNC_PER; //set measurement to be period
histogram.tparm.lStrtCnt = 1; //measure from first edge to second
histogram.tparm.lStpCnt = 2; //edge
histogram.tparm.lSampCnt = 10,000; //measure 10,000 samples per burst
histogram.lPassCnt = 0; //reset pass count to zero
histogram.lTailFit = TRUE; //indicate TailFit desired
histogram.lMinHits = 50,000; //don’t attempt a TailFit until at least
 //50,000 measurements are
 //accumulated
histogram.lAutoFix = TRUE; //perform pulse find initially if needed.
FCNL_RqstPkt (ApiDevId, &histogram, WIND_HIST); //execute the measurement.
FCNL_RqstAll (ApiDevId, &histogram, WIND_HIST); //get plot data

3.4.4.2 Conclusion of PAPI Histogram example
The example shows the typical code required to make a histogram measurement. This
structure will then send a binary packet over GPIB to configure and make a
measurement with the SIA-3000. The binary packet minimizes GPIB traffic and so is
optimized for a production environment.
3.5 ‘Tool Oriented’ GPIB

3.5.1 Reference Materials
• GPIB Command Reference, see “SIA-3000 GPIB Programming Guide”, Doc# 200007-02 Rev A
• GigaView Software information, see “SIA-3000 User’s Guide and Reference Manual”, Doc# 200053-

02 Rev A
• Gigaview Tools, see Getting Started Guides

3.5.2 Applications of Tool Oriented GPIB
For results from tools that go beyond the ‘Basic Measures GPIB’, the Tool Oriented
GPIB provides a more full command set of measurement tools. When certain
functionality of a tool needs to be accessed or setup, these commands provide that
capability. This slows the measurement as compared to Binary Packet/PAPI but
provides a more user friendly development environment.

3.5.3 Results to be expected
Most results from all tools can be retrieved or calculated from retrieved results.
Individual commands are required to set up each tool’s advanced options.

3.5.4 Example code
The following example shows a GPIB command sequence for the SIA-3000 which will
use the Histogram tool for acquiring Accumulated and Latest Mean, Minimum,
Maximum, Peak to Peak, and Standard Deviation Values. The corresponding controls
in the GigaView User Interface are shown as reference to aid in understanding the

Automating the SIA Page 14 of 26
©Wavecrest 2005

relationship between the GPIB commands and GigaView Control settings. Note that
using the GPIB commands does not require also setting the GUI controls.

Automating the SIA Page 15 of 26

3.5.4.1 Using Histogram tool with
Tool Oriented GPIB
commands

The histogram tool measures edge to
edge on a single channel. It can be
configured to measure any combination of edges on a clock signal such as
Rising Rising (Per+) as is shown in the example to the right. Or Falling falling (Per -
), Rising Falling (PW+), Falling Rising (PW-). It can also be configured to measure
across some number of edges, such as a Rising edge to the third Rising edge.

The first section of this example consists of 10 GPIB steps spanning 3 sections. The 3
sections are:

(1) Initialization & Configuration
(2) Take Measurement
(3) Retrieve Results

Initialization and Configuration should only be done once to set up the instrument before
starting a measurement. Taking a Measurement and Retrieving Results may be
repeated in cycles to take multiple passes and acquire statistics along the way.

The last part of this document, Configuration Options, consists of optional information
which may be applied to the 10 step sequence for custom configuration and external
arming. Following the 10 step sequence will allow you to retrieve results. The
:HISTOGRAM function can be configured in many ways and this paper shows just a
brief example. For a detailed reference of GPIB commands refer to the “SIA-3000 GPIB
Programming Guide 200007-02 RevA”.

3.5.4.2 Initialization & Configuration

1. Initialize the device with the following string:
:SYST:COMPOFF;:SYST:HEADOFF;:SYST:LONGON;:SYST:ENDLIT;*ESE
255;*SRE 255

2. Set the Defaults for the Histogram tool with the following string:
:HISTOGRAM:DEFAULT

©Wavecrest 2005

3. Set the Channel to be analyzed by the
Histogram tool. The following string
would set channel 1 as the input.
Replace 1 with a different number to
select a different channel.

:HIST:PARAM:CHAN1

Automating the SIA Page 16 of 26

4. Set the Histogram Tool to measure from
rising edge to rising edge with the
following string:

:HIST:PARAM:FUNC PER+

5. Set the number of hits per measure with
the following string. This example will
set 10000 hits per pass.

:HIST:PARAM:SAMP10000

6. Send the following string to set internal
Arm on Stop mode:

:HIST:PARAM:ARM:MODE STOP

7. Send the following string to set automatic
threshold voltage:

HIST:PARAM:THRESHOLD 5050

3.5.4.3 Take Measurement

8. Make a Histogram Pass with the following string:
:HISTOGRAM:ACQUIRE;*OPC

Note: To take multiple passes, simply send the above string repeatedly (One pass per
string sent)

©Wavecrest 2005

3.5.4.4 Retrieve Results

9. Send each of the following strings one by one, reading the return value
before sending the next string. The return information will be an ASCII
representation of the values. The table to the right shows the
corresponding values in the GigaView Histogram Summary page.

Automating the SIA Page
©Wavecrest 2005

17 of 26

:HISTOGRAM:MEAN?
Read Accumulative Mean Value
:HISTOGRAM:MINIMUM?
Read Accumulative Minimum Value
:HISTOGRAM:MAXIMUM?
Read Accumulative Maximum Value
:HISTOGRAM:STDDEV?
Read Accumulative 1-Sigma Value
:HISTOGRAM:PKTOPK?
Read Accumulative Pk-Pk Value
:HISTOGRAM:LATEST:MEAN?
Read Latest Mean Value
:HISTOGRAM:LATEST:MINIMUM?
Read Latest Minimum Value
:HISTOGRAM:LATEST:MAXIMUM?
Read Latest Maximum Value
:HISTOGRAM:LATEST:STDDEV?
Read Latest 1-Sigma Value
:HISTOGRAM:LATEST:PKTOPK?

Histogram Summary
 CH1
TJ 179.897ps
DJ (pk-pk) 44.968ps
Lt-rmsJ 9.987ps
Rt-rmsJ 10.345ps
Avg-rmsJ 10.166ps
Chi-Squared Lt 4.212452
Chi-Squared Rt 232.221815
Passes 19
Accum Period+ 20.000797ns
Accum Min 19.941569ns
Accum Max 20.067933ns
Accum 1-Sigma 15.74ps
Accum Pk-Pk 126.364ps
Accum Hits 190,000
Latest Period+ 20.001377ns
Latest Min 19.945841ns
Latest Max 20.060022ns
Latest 1-Sigma 15.75ps
Latest Pk-Pk 114.181ps
Latest Hits 10,000
Start Voltage 130mV
Stop Voltage 130mV
 Read Latest Pk-Pk Value

10. Repeat steps (8) and (9) to acquire another pass and retrieve the latest and
accumulated values including the new pass.

3.5.4.5 Configuration Options

These are not necessary for the example sequence above, but are alternatives that may
be used to configure the device differently.

These would replace (4) above to select different edges. PER- is
falling to falling, PW+ is rising to falling, and PW- is falling to rising.
:HIST:PARAM:FUNC PER-
:HIST:PARAM:FUNC PW+
:HIST:PARAM:FUNC PW-

These would replace (6) above. The last item
selects external arming which requires many
additional commands.
:HIST:PARAM:ARM:MODE START
:HIST:PARAM:ARM:MODE EXTERNAL

If external arming is selected, the following string
would set channel 3 as the arming channel:
:HIST:PARAM:ARM:CHAN3

Select one of these two commands to select
arming on the rising or falling edge of the arm
signal.
:HIST:PARAM:ARM:SLOP RISE
:HIST:PARAM:ARM:SLOP FALL

This string would configure the arming level of the
external arming signal to 20 mV.
:HIST:PARAM:ARM:VOLT 0.02

Automating the SIA Page 18 of 26
©Wavecrest 2005

The following sequence of commands would be sent to select a user threshold for the
clock signal that is 0.500 volts. All 3 strings would be sent instead of (7) above.
:HIST:PARAM:THRESHOLD USER
:HIST:PARAM:START:VOLT 0.500
:HIST:PARAM:STOP:VOLT 0.500

3.5.4.6 Conclusion of Tool Oriented GPIB example

The :HISTOGRAM function can be configured in many ways and this paper shows just
a brief example. For a detailed reference of GPIB commands refer to the “SIA-3000
GPIB Programming Guide Doc# 200007-02 Rev A”. Other configurations include
enabling TailFit to measure Random (RJ) and Deterministic (DJ) jitter, setting time
filters, and “keep-out” regions.

Automating the SIA Page 19 of 26
©Wavecrest 2005

3.6 ‘Binary Packet’ GPIB

3.6.1 Reference Materials
• GPIB Command Reference, see “SIA-3000 GPIB Programming Guide”, Doc# 200007-02 Rev A

3.6.2 Applications of Binary Packet GPIB
These commands are good for production applications, but are not typically
implemented as stand alone code. Rather, the PAPI structures provide an interface
between the familiar GigaView tools and the Binary Packet GPIB. PAPI utilizes Binary
Packet GPIB which, without this interface, can be implemented but requires more
development time.

3.6.3 Results to be expected
Binary Packet GPIB will return results from the familiar GigaView tools, but are typically
implemented at a higher level with PAPI.

3.6.4 Example code
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/* Standard acquire functions */
#define MIN_FUNC 1 /* Minimum valid function */
#define FUNC_TPD_PP 1 /* TPD +/+ 2-Chan */
#define FUNC_TPD_MM 2 /* TPD -/- 2-Chan */
#define FUNC_TPD_PM 3 /* TPD +/- 2-Chan */
#define FUNC_TPD_MP 4 /* TPD -/+ 2-Chan */
#define FUNC_TT_P 5 /* Rising edge 1-Chan */
#define FUNC_TT_M 6 /* Falling Edge 1-Chan */
#define FUNC_PW_P 7 /* Positive pulse width 1-Chan */
#define FUNC_PW_M 8 /* Negative pulse width 1-Chan */
#define FUNC_PER 9 /* Period 1-Chan */
#define FUNC_FREQ 10 /* Frequency 1-Chan */
#define FUNC_PER_M 11 /* Period minus 1-Chan */
#define MAX_FUNC 11 /* Maximum valid function */
/* Rise/Fall edge designators */
#define MIN_EDGE 0 /* Minimum reference edge designator */
#define EDGE_FALL 0 /* Measurement reference is falling edge */
#define EDGE_RISE 1 /* Measurement reference is rising edge */
#define EDGE_BOTH 2 /* Used for DDR in EYEH, DBUS, & FCMP */
#define MAX_EDGE 2 /* Maximum reference edge designator */
/* Pulsefind mode designators */
#define MIN_PFND 0 /* Minimum valid pulse-find designator */
#define PFND_FLAT 0 /* Use flat algorithm for pulse-find calc */
#define PFND_PEAK 1 /* Use peak value for pulse-find calc */
#define PFND_STRB 2 /* Use strobing method for pulse-find calc*/
#define MAX_PFND 2 /* Maximum valid pulse-find designator */
/* Pulsefind percentage designators */
#define MIN_PCNT 0 /* Minimum valid percentage designator */
#define PCNT_5050 0 /* Use 50/50 level for pulse-find calc */
#define PCNT_1090 1 /* Use 10/90 level for pulse-find calc */

Automating the SIA Page 20 of 26
#define PCNT_9010 2 /* Use 90/10 level for pulse-find calc */

©Wavecrest 2005

#define PCNT_USER 3 /* Do NOT perform pulse-find; manual mode */
#define PCNT_2080 4 /* Use 20/80 level for pulse-find calc */
#define PCNT_8020 5 /* Use 80/20 level for pulse-find calc */
#define MAX_PCNT 5 /* Maximum valid percentage designator */
/* Arming mode designators */
#define MIN_MODE 0 /* Minimum arming mode designator */
#define ARM_EXTRN 0 /* Arm using one of the external arms */
#define ARM_START 1 /* Auto-arm on next start event */
#define ARM_STOP 2 /* Auto-arm on next stop event */

/* Structure with standard setup parameters */
typedef struct
 {
 long lFuncNum; /* Function to measure */
 long lChanNum; /* Channel to measure */
 long lStrtCnt; /* Channel start count */
 long lStopCnt; /* Channel stop count */
 long lSampCnt; /* Sample size */
 long lPadLoc1;
 double dStrtVlt; /* Start voltage */
 double dStopVlt; /* Stop voltage */
 long lExtnArm; /* Arm when external is selected */
 long lPadLoc2;

 long lOscTrig; /* O-scope trigger */
 long lOscEdge; /* O-scope rise/fall trig */

 long lFiltEnb; /* Filter enable */
 long lPadLoc3;
 double dFiltMin; /* Filter minimum */
 double dFiltMax; /* Filter maximum */

 long lAutoArm; /* Auto arm enable/mode */
 long lArmEdge; /* Arm rise/fall edge */
 long lGatEdge; /* Gate rise/fall edge */
 long lPadLoc4;
 double dArmVolt; /* Arm user voltage */
 double dGatVolt; /* Gate voltage */
 long lGateEnb; /* Enable gating */
 long lCmdFlag; /* Command flag for timestamping, etc.. */

 long lFndMode; /* Pulse find mode */
 long lFndPcnt; /* Pulse find percent */
 long lPadLoc5;
 long lPadLoc6;
 long lPadLoc7[2][6];

 long lTimeOut; /* Timeout in sec's, if negative it's ms */
 long lArmMove; /* Arming delay in steps [can be +/-] */
 long lNotUsed[2]; /* DSM channel select */
 } PARM;

/* Structure used for Clock Statistics window */
typedef struct
 {
 /* Input parameters */

Automating the SIA Page 21 of 26
 PARM tParm; /* Contains acquisition parameters */

©Wavecrest 2005

 long lPfnd; /* Force a pulse-find before each measure */
 long lQckMeas; /* If true skip frequency and voltages */
 /* Output parameters */
 long lGood; /* Flag indicates valid data in structure */
 long lPad1;
 double dPwPavg; /* Contains the PW+ average value */
 double dPwPdev; /* Contains the PW+ 1-Sigma value */
 double dPwPmin; /* Contains the PW+ minimum value */
 double dPwPmax; /* Contains the PW+ maximum value */
 double dPwMavg; /* Contains the PW- average value */
 double dPwMdev; /* Contains the PW- 1-Sigma value */
 double dPwMmin; /* Contains the PW- minimum value */
 double dPwMmax; /* Contains the PW- maximum value */
 double dPerPavg; /* Contains the PER+ average value */
 double dPerPdev; /* Contains the PER+ 1-Sigma value */
 double dPerPmin; /* Contains the PER+ minimum value */
 double dPerPmax; /* Contains the PER+ maximum value */
 double dPerMavg; /* Contains the PER- average value */
 double dPerMdev; /* Contains the PER- 1-Sigma value */
 double dPerMmin; /* Contains the PER- minimum value */
 double dPerMmax; /* Contains the PER- maximum value */

 double dDuty; /* Contains the returned duty cycle */
 double dFreq; /* Contains the carrier frequency */
 double dVmin; /* Pulse-find Min voltage */
 double dVmax; /* Pulse-find Max voltage */
 } CLOK;

int main()
 {
 CLOK clok;
 long length;
 char buffer[8192];

 // Initialize the binary structure
 memset(&clok, 0, sizeof(CLOK));
 clok.tParm.lFuncNum = FUNC_PER;
 clok.tParm.lChanNum = 1;
 clok.tParm.lStrtCnt = 1;
 clok.tParm.lStopCnt = 2;
 clok.tParm.lSampCnt = 100;
 clok.tParm.lAutoArm = ARM_STOP;
 clok.tParm.lArmEdge = EDGE_RISE;
 clok.tParm.lFndMode = PFND_PEAK;
 clok.tParm.lFndPcnt = PCNT_5050;
 clok.tParm.lTimeOut = 2;

 // Determine the length of the binary packet length string
 sprintf(buffer, "%i", sizeof(CLOK));
 length = strlen(buffer);
 // Create the header string
 sprintf(buffer, ":ACQ:CLKSTAT #%i%i", length, sizeof(CLOK));
 // Determine it's length
 length = strlen(buffer);
 // Append the binary packet to the end of the header string
 memcpy(&buffer[length], &clok, sizeof(CLOK));

Automating the SIA Page 22 of 26
 // Disable the header from being returned

©Wavecrest 2005

 Send(0, 5, ":SYST:HEAD OFF", 14, EOI);
 // Send the binary packet command
 Send(0, 5, buffer, length + sizeof(CLOK), EOI);
 // Read the binary packet back with the results of the acquisition
 Receive(0, 5, &clok, sizeof(CLOK), EOI);
 // Print the results
 printf("Per+ : %lf ns\n", clok.dPerPavg * 1e9);
 printf("Per- : %lf ns\n", clok.dPerMavg * 1e9);
 printf("PW+ : %lf ns\n", clok.dPwPavg * 1e9);
 printf("PW- : %lf ns\n", clok.dPwMavg * 1e9);

 return 0;
 }

Automating the SIA Page 23 of 26
©Wavecrest 2005

3.7 ‘Basic Measures’ GPIB

3.7.1 Reference Materials
GPIB Command Reference, see “SIA-3000 GPIB Programming Guide”, Doc# 200007-02 Rev A

3.7.2 Applications of Basic Measures GPIB
These commands are very good for production applications. Of all measurements in
the SIA they are the fastest, but are also not very comprehensive. This command set is
usually used in ATE testers where only basic measurements are required and speed of
test is critical.

3.7.3 Results to be expected
Basic Measures GPIB commands are limited to the following measurements and results
returned:
Period +
PW +
PW -

Example code
The following example is typical of a simple measurement of the period of a clock
signal. It is pseudo code because different operating systems and programming
languages may have different requirements for some instructions. In general, this
example should serve as a useful example.

// Pseudo - code to setup a period measurement - assumes channel 1
Send(0,5,":ACQ:FUNC PER",13,EOI); // Period measurement
Send(0,5,":ACQ:COUN 1000(@1)",18,EOI); // Set the sample count
Send(0,5,":CHAN1START:COUNT 1",19,EOI); // First rising edge
Send(0,5,":CHAN1STOP:COUNT 2",18,EOI); // To next rising edge
Send(0,5,":TRIG:SOURCE INTERNAL",21,EOI); // Arm off the signal itself
Send(0,5,":DISP:LEV 5050",14,EOI); // 50% voltage threshold

// Pseudo-code to sample the signal to establish the voltage threshold
// This takes about 130ms, otherwise user voltages can be used

Send(0,5,":ACQ:LEV(@1)?",13,EOI); // Request the "pulsefind"
Receive(0,5,Buffer,sizeof(Buffer),EOI); // Go get the results

// The buffer will hold results (min voltage, max voltage) similar to the following:
:ACQUIRE:LEVEL -0.1082758 +0.8043081

// To establish user voltages use the following:
Send(0,5,":DISP:LEV USER",14,EOI); // USER voltage threshold
Send(0,5,":CHANSTART:LEV -0.125",21,EOI); // First measurement edge
Send(0,5,":CHANSTOP:LEV -0.125",20,EOI); // Next measurement edge

// To take the measurement use the following command
Send(0,5,":ACQ:ALL PER(@1)",16,EOI); // Request the measurement
Receive(0,5,Buffer,sizeof(Buffer),EOI); // Go get the results

Automating the SIA Page 24 of 26
©Wavecrest 2005

// The buffer will hold results (avg, stdev, min, max) similar to the following:
:ACQUIRE:ALL +1.1082758e-009 +2.8043081e-12 +1.1006245e-009 +1.1163601e-009

//For skew measurements similar commands are used, except substitute the following:
Send(0,5,":ACQ:FUNC TPD++",13,EOI); // TPD from rising to rising edge
Send(0,5,":ACQ:COUN 1000(@1,2)",20,EOI); // Set the sample count, both
channels
Send(0,5,":CHAN1START:COUNT 1",19,EOI); // First rising edge, channel 1
Send(0,5,":CHAN2STOP:COUNT 1",18,EOI); // First rising edge, channel 2
Send(0,5,":TRIG:SOURCE INTERNAL",21,EOI); // Arm off the signal itself
Send(0,5,":DISP:LEV 5050",14,EOI); // 50% voltage threshold

// Pseudo-code to sample the signal to establish the voltage threshold
// This takes about 130ms, otherwise user voltages can be used
Send(0,5,":ACQ:LEV(@1,2)?",13,EOI); // Request the "pulsefind", both
channels
Receive(0,5,Buffer,sizeof(Buffer),EOI); // Go get the results

// The buffer will hold results (min voltage, max voltage) similar to the following:
:ACQUIRE:LEVEL -0.1082758 +0.8043081 -0.1006245 +0.1163601

// To take the measurement use the following command
Send(0,5,":ACQ:ALL TPD++(@1&2)",16,EOI); // Measurement from Chan1 to Chan2
Receive(0,5,Buffer,sizeof(Buffer),EOI); // Go get the results

Automating the SIA Page 25 of 26
©Wavecrest 2005

4 Conclusion

This document has pointed out some of the different ways of automating the SIA-3000.
There are trade-offs for the various approaches. The discussion of the applications of
each and the example code should leave the programmer with the ability to understand
which approach is best for them. While this paper does not include complete
documentation of everything needed to begin, it provides references to relevant guides
or manuals for each application.

Automating the SIA Page 26 of 26
©Wavecrest 2005

	Introduction
	Overview of automation approaches
	Remote GigaView
	Visual Basic Script Macros
	LabVIEW (Tool Oriented GPIB
	PAPI (Binary Packet GPIB
	Tool Oriented GPIB
	Binary Packet GPIB
	Basic Measures GPIB

	Detailed examples of automation approaches
	GigaView Remote
	Reference Materials

	GigaView Software information, see “SIA-3000 User’s Guide an
	Gigaview Tools, see “Navigating GigaView” Getting Started Gu
	Applications of GigaView Remote
	VisualBasic Script Macros
	Reference Materials
	Applications of VB macros
	Results to be expected
	Example code

	LabView (Tool Oriented GPIB
	Reference Materials

	LabVIEW drivers, see “SIA-3000 LabVIEW Driver Reference Gui
	GigaView Software information, see “SIA-3000 User’s Guide an
	Applications of LabVIEW
	Results to be expected
	Example code

	PAPI (Binary Packet GPIB
	Reference Materials
	Applications of PAPI
	Results to be expected
	Example code
	Structure used for Histogram Window
	Conclusion of PAPI Histogram example

	‘Tool Oriented’ GPIB
	Reference Materials
	Applications of Tool Oriented GPIB
	Results to be expected
	Example code
	Using Histogram tool with Tool Oriented GPIB commands
	Initialization & Configuration
	Initialize the device with the following string:
	Set the Defaults for the Histogram tool with the following s
	Set the Channel to be analyzed by the Histogram tool. The fo
	Set the Histogram Tool to measure from rising edge to rising
	Set the number of hits per measure with the following string
	Send the following string to set internal Arm on Stop mode:
	Send the following string to set automatic threshold voltage

	Take Measurement
	Make a Histogram Pass with the following string:

	Retrieve Results
	Send each of the following strings one by one, reading the r
	Repeat steps (8) and (9) to acquire another pass and retriev

	Configuration Options
	Conclusion of Tool Oriented GPIB example

	‘Binary Packet’ GPIB
	Reference Materials
	Applications of Binary Packet GPIB
	Results to be expected
	Example code

	‘Basic Measures’ GPIB
	Reference Materials
	Applications of Basic Measures GPIB
	Results to be expected
	Example code

	Conclusion

