Designcon 2002 Presentation

A New Method For Simultaneously Measuring And Analyzing PLL Transfer Function And Noise Processes

Mike Li

CTO, Ph.D.

Corporate Consultant

Outline

- Introduction
- Phase Locked-Loop (PLL) and Noise Processes
- Variance and Power Spectrum Density (PSD)
- Application of Variance and PSD in PLL analysis
- Conclusion

(Patents for the methodology is pending)

Phase-Locked Loop

PLL Applications

- Tracking
- Frequency multiplication/division
- Synchronization
- Demodulation
- Computer/microprocessor
- Clock generation
- Clock recovery

I.) Time-Domain Approach

I.) Time-Domain Solutions

$$\boldsymbol{q}_{e} = e^{-Kt} \left(\int e^{Kt} \boldsymbol{q}_{i}(t) dt + c \right)$$

 $K = K_d K_f K_{o}$, is the loop gain,

If $\theta_i = \text{constant}$, then $\theta_e \to 0$ when $t \to \infty$;

If $\theta_i = \omega t$, then, $\theta_e \to \text{constant}$ when $t \to \infty$.

II.) Frequency-Domain Approach

II.) Frequency-Domain Solution

System transfer function

$$H_o = \frac{\boldsymbol{q}_0(s)}{\boldsymbol{q}_i(s)} = \frac{K_d K_o F(s)}{s + K_d K_o F(s)}$$

• Error transfer function

$$H_e(s) = \frac{\boldsymbol{q}_e(s)}{\boldsymbol{q}_i(s)} = \frac{K_d s}{s + K_d K_o F(s)}$$

PLL Transfer Functions

PLL Poles and Zeros

PLL Key Parameters

- Damping factor
- Natural frequency
- Locking time
- Locking range
- Pull-in time
- Pull-in range
- Noise bandwidth

PLL Noise Processes

• Thermal noise

$$S_{th, i} = 2kT/R$$

• Short noise

$$S_{s,i} = qi(t)$$

• flick noise

$$S_f = K_a \frac{I^a}{f_m^b}, b \sim 1$$

Random walk

$$S_f = K_a \frac{I^a}{f_m^b}, b \sim 2$$

High order random noise

PLL Noise Processes

PLL Noise Model

I.) Time-domain approach

$$\mathbf{s}_{t}^{2}(t) = 2(\mathbf{s}_{0}^{2} - R_{tt}(\Delta t_{n}(t), \Delta t_{0}))$$

• But

$$R_{tt}(\Delta t_n(t), \Delta t_0) = \Im^{-1}(S(f))$$

PLL Noise

Variance (or sigma) record

Wavecrest

PLL Noise

Some basics on LTI system

$$\mathbf{q}_{o}(f) = H_{o}(f)\mathbf{q}_{i}(f)$$

$$S_o(f) = \left| H_o(f) \right|^2 S_i(f)$$

PLL Noise Model

II.) Frequency-domain approach

$$S_o(f) = \sum_{i} S_i(f) \left| \frac{H_{FG_i}(s)}{1 + H_{OL}(s)} \right|_{s=j2pf}^{2}$$

• Key insight: PLL noise PSD manifests both noise process and transfer functions

PLL Noise Spectrum

Noise Power Spectrum Density

PLL Transfer Function and Gain Measurements

Traditional Methods

Limitations for Traditional Methods

- Requires a modulation & signal source
- Requires the access of PLL internal
- It is a piece-meal approach
- No separation of noise from transfer function
- It is slow
- No prediction capability

New PLL Measurement and Analysis Method

- The methodology is based on the fact that PLL variance tracks both noise process and transfer function.
- The methodology takes the advantage of Time Interval Analyzer (TIA) that can take
 1 million measurements per second.
- The methodology determines the noise PSD and transfer function based on measured variance time record.

Illustration of the New Method

For a second-order PLL

$$H_{0}(s) = \frac{2zw_{n}s + w_{n}^{2}}{s^{2} + 2zw_{n}s + w_{n}^{2}}$$

• Variance function will be:

$$s_{t}^{2}(t,z,w_{n},N_{n})$$

• Parameters of ω_n , ζ , N_n are determined by

$$|\mathbf{s}|_{t_{-} \mod el}^{2} - \mathbf{s}|_{t_{-} measured}^{2} |< \mathbf{e}|$$

A Case Study

Setup

Variance Measurement Results

PLL Transfer Function and Noise PSD

- Damping factor: $\zeta = 0.11$
- Natural frequency: $\omega_n = 4.30 \text{ MHz}$
- Average PSD: $N_n = 3.16 \times 10^{-7} \, \mu w/Hz$

$$H_{0}(s) = \frac{0.906 \ s + 18.49}{s^{2} + 0.906 \ s + 18.49}$$

PLL Transfer Function

PLL Parameters

• Lock-in time:

$$T_L = \frac{2 p}{w_n}$$

• Lock range:

$$\Delta w_L \approx 2zw_n$$

• Pull-in time:

$$T_P = \frac{\mathbf{p}^2}{16} \frac{\Delta \mathbf{w}_0^2}{\mathbf{z}\mathbf{w}_n^3}$$

• Noise bandwidth:

$$B_{L} = \frac{\mathbf{w}_{n}}{2} \left(\mathbf{z} + \frac{1}{4 \mathbf{z}} \right)$$

Analysis Functionalities

- Pole/zero locations
- Bode plots
- Root locus
- Stability analysis
- "in situ simulation and prediction

New Measurement Platform: **SIA3000**

- Up to 10 channels (single ended or differential)
- >1 million measurements per second
- 3.2 GHz, 3.2 Gb/s speed
- 200 fs resolution
- < 2 ps rms noise floor

Conclusion

- A new theory links PLL transfer function with noise processes.
- A methodology measures and analyzes PLL transfer function and noise PSD in one pass.
- A methodology that is fast (~ second throughput) and does not require a stimulator.
- A methodology provides all the PLL parameters and functions.
- A methodology that makes compliance testing practical for PLL transfer function.

