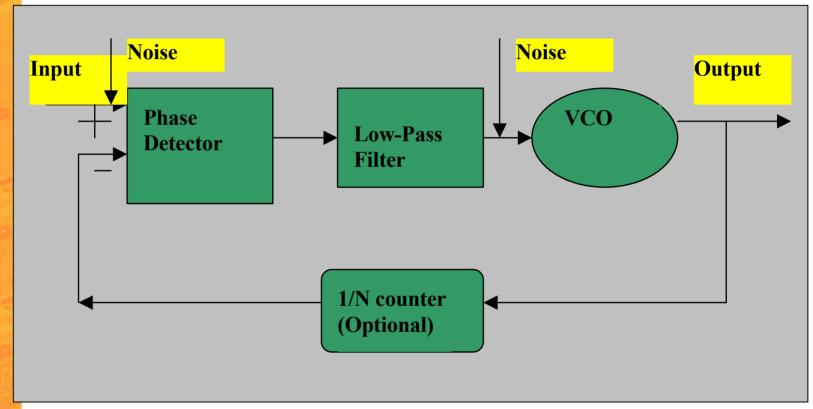
New Phase Locked- Loop (PLL) Measurement and Analysis Methods (2nd – 3rd Order) Without A Stimulus

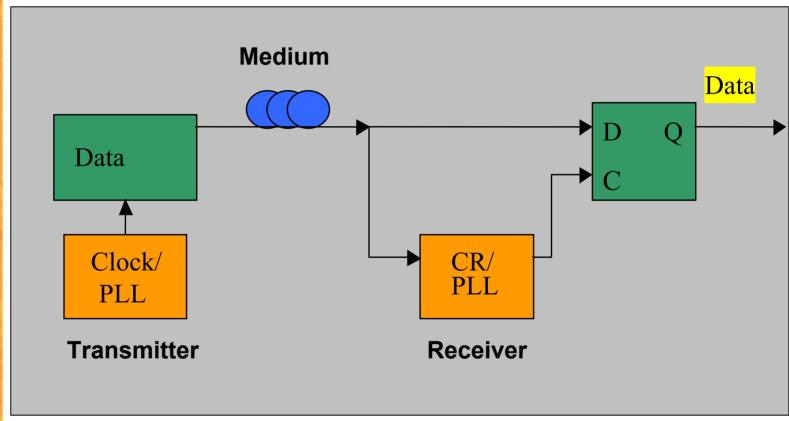
Mike Li, Wavecrest Jun Ma, Wavecrest Mark Marlett, LSI Logic

Purposes

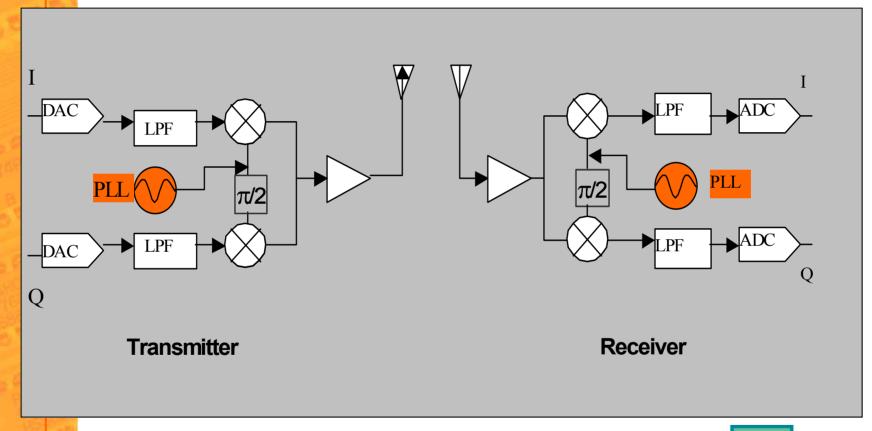

- Review the autocorrelation/variance function based PLL analysis and 2nd order results
- Develop a generic system transfer function measurement and analysis method for a 3rd or Nth order PLL
- Simulation and experiment that verifies and proves the proposed method
- Apply the new 3rd or Nth order PLL method to practical devices used in applications such as PCI Express and FB DIMM

Outline

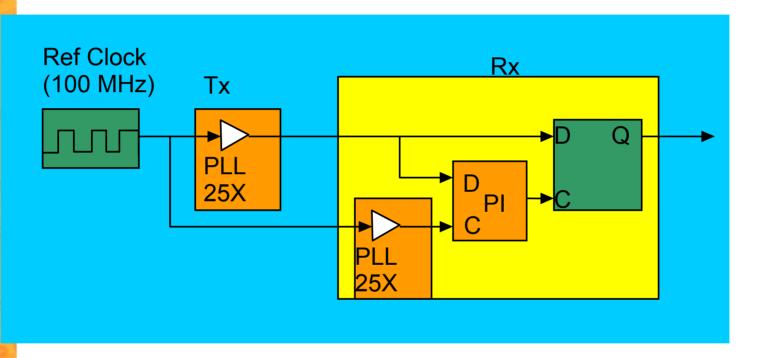
- PLL applications
- 2nd PLL analysis review
- Third order PLL transfer function
- Performance analysis of the 3rd order PLL system
- Frequency domain based measurement approach
- Experiment and verification
- Conclusions and remarks



Phase-Locked Loop



PLL Application in Data Communications



PLL Application in Wireless Communications

PCI Express and FB DIMM

 Testing PLL 3 dB frequency and peaking is required by specification

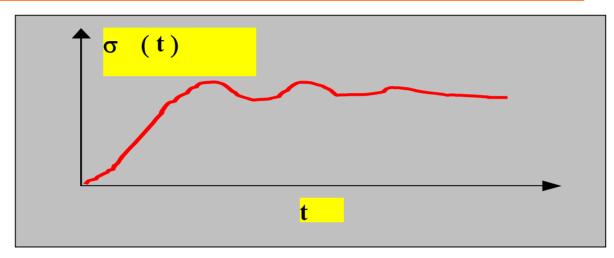
Outline

- PLL applications
- 2nd PLL analysis review
- Third order PLL transfer function
- Performance analysis of the 3rd order PLL system
- Frequency domain based measurement approach
- Experiment and verification
- Conclusions and remarks

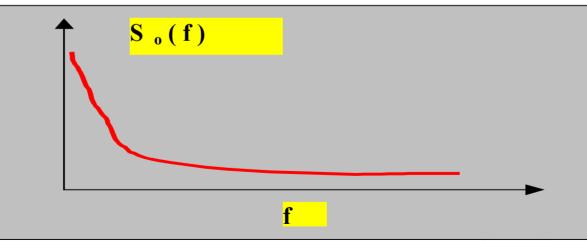
PLL Jitter Generic Model and Theory

Auto-correlation/Variance function and PSD

$$\sigma_t^2(t) = 2(\sigma_0^2 - R_{tt}(\Delta t_n(t), \Delta t_0))$$


but
$$R_{tt}(\Delta t_n(t), \Delta t_0) = \mathfrak{I}^{-1}(S(f))$$

and
$$\sigma_t^2(t) = 2(\sigma_0^2 - \mathfrak{I}^{-1}(S(f)))$$



General Behavior of PLL Variance Function and Noise PSD

Variance

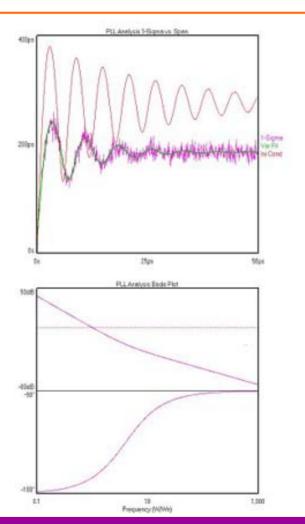
Noise PSD

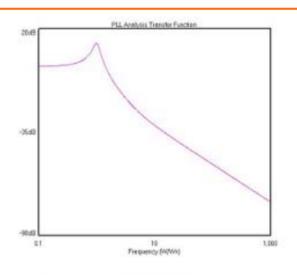
2nd Order PLL Measurement Method

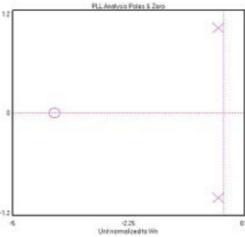
For a second-order PLL

$$H_{0}(s) = \frac{2 \zeta \omega_{n} s + \omega_{n}^{2}}{s^{2} + 2 \zeta \omega_{n} s + \omega_{n}^{2}}$$

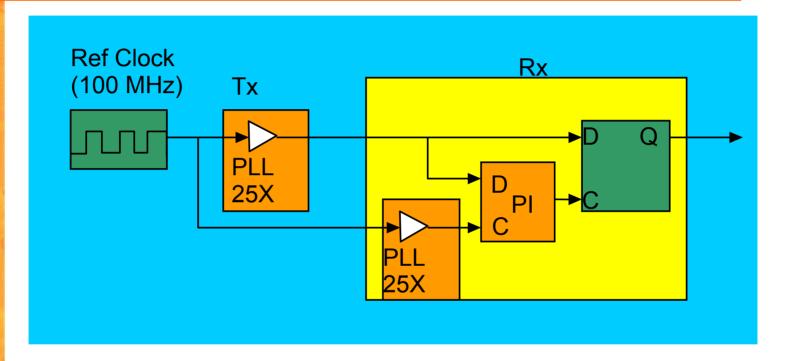
Variance function will be:


$$\sigma_t^2(t,\zeta,\omega_n)$$


Parameters of ω_n , ζ are determined by minimizing

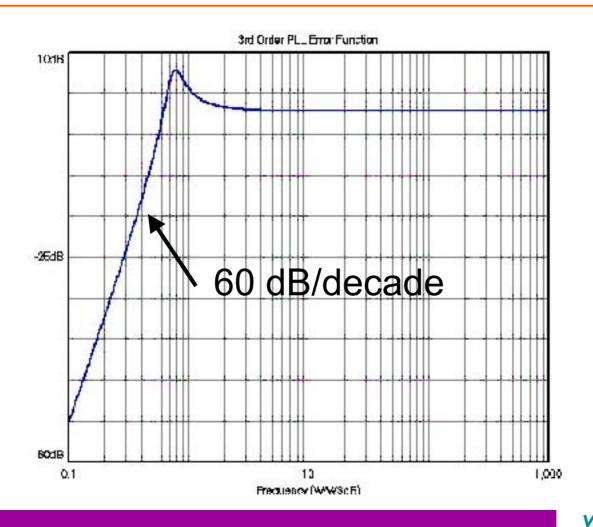

$$|\sigma_{t_{\mod el}}^{2} - \sigma_{t_{\mod easured}}^{2}| < \varepsilon$$

2nd Order PLL Measurement Results

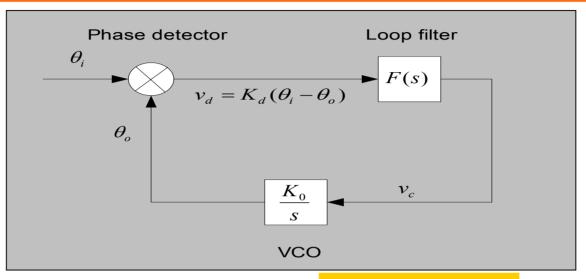


Outline

- PLL applications
- 2nd PLL analysis review
- Third order PLL transfer function
- Performance analysis of the 3rd order PLL system
- Frequency domain based measurement approach
- Experiment and verification
- Conclusions and remarks


Why 3rd order PLL?

- Feed-through clock suppressing
- Phase error acceleration tracking
- Better jitter tracking at low frequency



A 3rd order PLL Jitter Transfer Function

3rd Order PLL system

Open loop transfer function:

$$G(s) = \frac{K_0 K_d F(s)}{s}$$

Closed loop transfer function:

$$H(s) = \frac{\theta_o(s)}{\theta_i(s)} = \frac{G(s)}{1 + G(s)} = \frac{K_0 K_d F(s)}{s + K_0 K_d F(s)}$$

Phase error:
$$\theta_e(s) = (1 - H(s))\theta_i(s) = \frac{s\theta_i(s)}{s + K_0K_dF(s)}$$

Steady State Response of the 3rd Order PLL

Final value theorem:

$$\lim_{t \to \infty} y(t) = \lim_{s \to 0} sY(s)$$

Steady state phase error:

$$\lim_{t \to \infty} \theta_e(t) = \lim_{s \to 0} \frac{s^2 \theta_i(s)}{s + K_0 K_d F(s)}$$

A step change of *phase*:

$$\theta_i(t) = \Delta\theta \ u(t)$$

$$\theta_i(t) = \Delta \theta \ u(t) \qquad \longleftrightarrow \qquad \theta_i(s) = \frac{\Delta \theta}{s}$$

A step change of frequency:

$$\theta_i(t) = \Delta \omega t \ u(t)$$

$$\theta_i(t) = \Delta \omega t \ u(t) \qquad \bullet \qquad \theta_i(s) = \frac{\Delta \omega}{s^2}$$

A step change of acceleration:

$$\theta_i(t) = \frac{1}{2}\Delta\dot{\omega}t^2 \ u(t)$$
 $\theta_i(s) = \frac{\Delta\dot{\omega}}{s^3}$

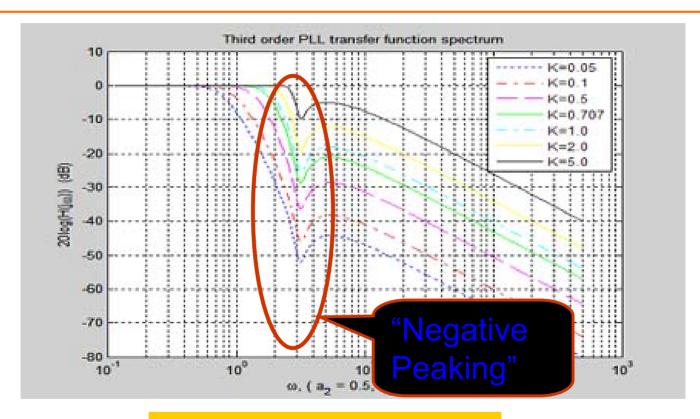
$$\theta_i(s) = \frac{\Delta \dot{\omega}}{s^3}$$

A Step Change of Acceleration (3rd order PLL)

A step change of acceleration:

$$\theta_i(t) = \frac{1}{2} \Delta \dot{\omega} t^2 \ u(t) \qquad \theta_i(s) = \frac{\Delta \dot{\omega}}{s^3}$$

Steady state error:


$$\lim_{t \to \infty} \theta_e(t) = \lim_{s \to 0} \frac{s^2 \theta_i(s)}{s + K_0 K_d F(s)}$$
$$= \lim_{s \to 0} \frac{\Delta \dot{\omega}}{s^2 + s \cdot K_0 K_d F(s)}$$

Track acceleration step change:

$$\lim_{t \to \infty} \theta_e(t) = 0 \quad \to \quad F(s) = \frac{s^2 + a_2 s + a_3}{s^2} \quad \to \quad 3^{rd} \text{ order PLL}, \ H(s) = \frac{K(s^2 + a_2 s + a_3)}{s^3 + K(s^2 + a_2 s + a_3)}$$

3rd Order PLL Spectrum

$$H(s) = \frac{K(s^2 + a_2 s + a_3)}{s^3 + K(s^2 + a_2 s + a_3)}$$

Outline

- PLL applications
- 2nd PLL analysis review
- Third order PLL transfer function
- Performance analysis of the 3rd order PLL system
- Frequency domain based measurement approach
- Experiment and verification
- Conclusions and remarks

Noise Performance of 3rd Order PLL

PLL loop bandwidth:

$$B_L = \int_0^\infty |H(j2\pi f)|^2 df \qquad Hz$$

3rd order loop BW:

$$B_L = \frac{1}{4}K \cdot \frac{a_2K + a_2^2 - a_3}{a_2K - a_3} \qquad Hz$$

Phase jitter variance:

$$\sigma_{no}^2 = \frac{W_i B_L}{P_s} = \frac{2N_o B_L}{V_s^2} \qquad rad^2$$

Loop SNR:

$$SNR_L = \frac{P_s}{2B_L W_i} = \frac{V_s^2 / 2}{2B_L N_o}$$

Tracking Performance of 3rd Order PLL

Linear tracking

3rd order PLL can track the step change of *phase*,
 frequency, and frequency acceleration.

Non-linear tracking

Hold range: (steady-state)

$$\Delta \omega_H = \pm K_v = \pm K_0 K_d F(0)$$

 Pull out range: not much understanding (transient)

Acquisition Performance of 3rd Order PLL

Phase acquisition

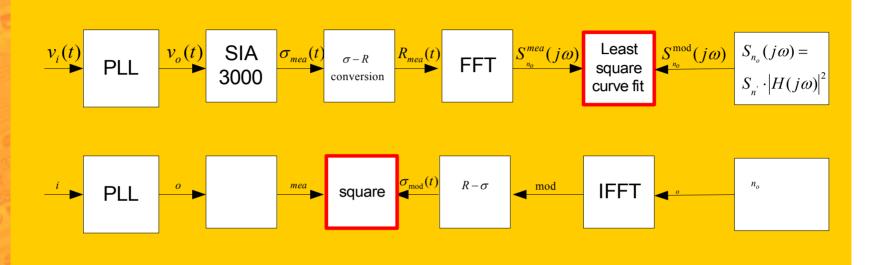
Lock in range: (loop gain)

$$\Delta \omega_L \approx \pm K = \pm K_0 K_d F(\infty)$$

Frequency acquisition

- Pull in limit:

$$\Delta \omega_P \cong \sqrt{2K_v K}$$
 $K_v >> K$


– Pull in time:

$$T_P \cong \sqrt{\frac{\pi}{a_3}} \cdot \frac{\Delta \omega}{K} \qquad \Delta \omega >> K$$

$$\Delta \omega_L < \Delta \omega_P < \Delta \omega_H$$

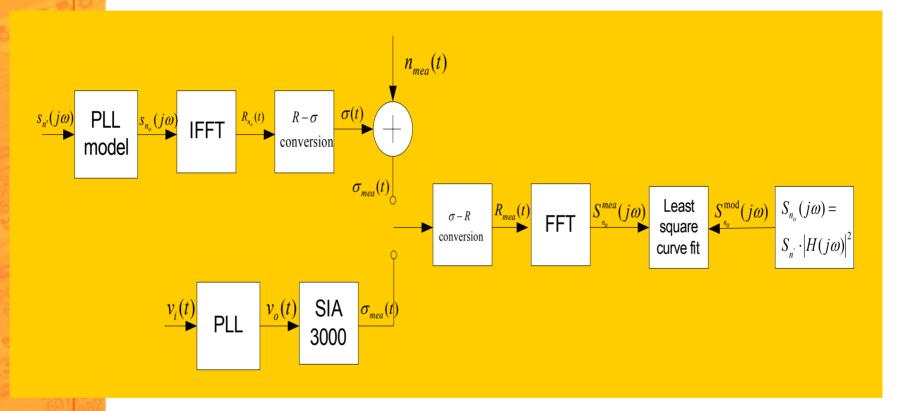
Lock in range < Pull in limit < Hold in range

Freq. vs. Time-Domain Optimization

$$H(s) = \frac{K(s^2 + a_2 s + a_3)}{s^3 + K(s^2 + a_2 s + a_3)}$$

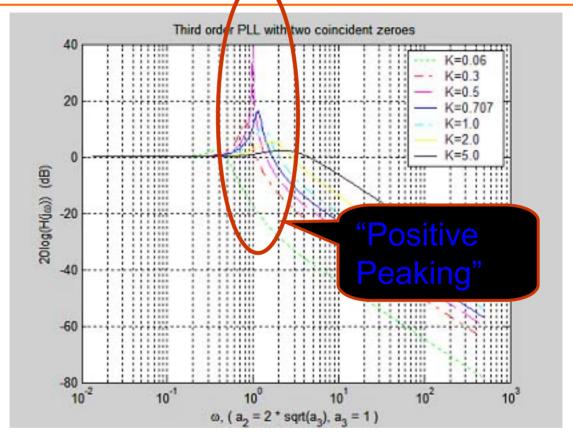
$$R_{n_o}(t) = \sigma_0^2 - \frac{1}{2}\sigma^2(t)$$

$$\min_{\left\{K, a_2, a_3, S_{n'}\right\}} \varepsilon = \int_{-\infty}^{+\infty} \left| S_{n_0}^{mea}(j\omega) - S_{n_0}^{mod}(j\omega) \right|^2 d\omega$$



Outline

- PLL applications
- 2nd PLL analysis review
- Third order PLL transfer function
- Performance analysis of the 3rd order PLL system
- Frequency domain based measurement approach
- Experiment and verification
- Conclusions and remarks



Simulation and Verification Model

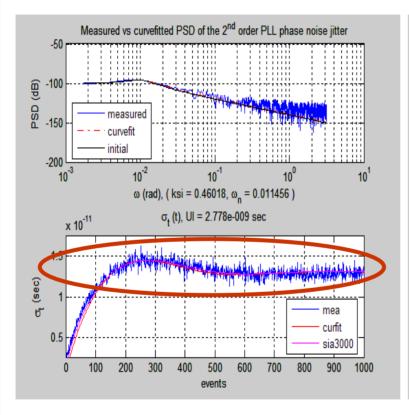
3rd Order PLL Transfer **Function**

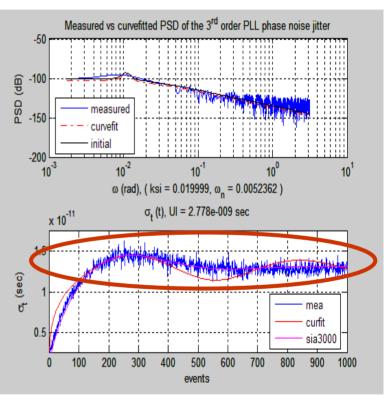
$$H(s) = \frac{K(s^2 + 2s + 1)}{s^3 + K(s^2 + 2s + 1)}, \quad K = 0.707, K = 2$$

Outline

- PLL applications
- 2nd PLL analysis review
- Third order PLL transfer function
- Performance analysis of the 3rd order PLL system
- Frequency domain based measurement approach
- Experiment and verification
- Conclusions and remarks

Lab Experiments and Verification Results

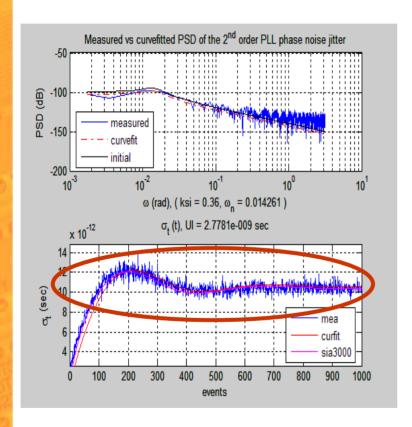

$$H(s) = \frac{2\zeta\omega_n s + \omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

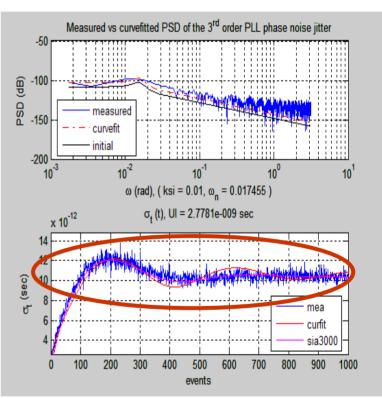

$$H(s) = \frac{K(s^2 + a_2s + a_3)}{s^3 + K(s^2 + a_2s + a_3)}$$

Cases	2nd Order		3 rd Order		
F_c =4e6	ζ	ω n(rad)	K	a_2 (rad)	a_3 (rad)
A	0.46	0.0108	0.02	0.0052	0.0353
В	0.36	0.0143	0.01	0.0175	0.0524
C	0.84	0.0654	0.07	0.0079	0.7886
D	1.00	0.0738	0.10	0.0094	0.1807

WAVECREST

Case A: 2nd and 3rd Order Results for a 2nd Order PLL device

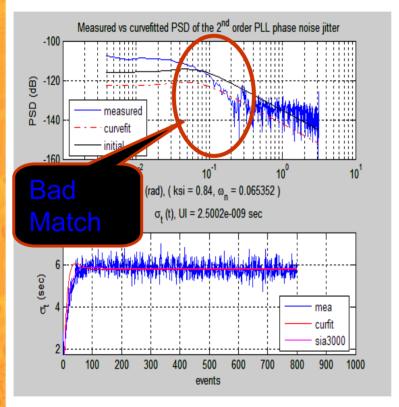


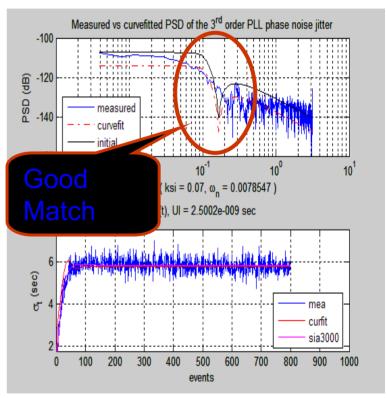


2nd Order Model Fit

3rd Order Model Fit

Case B: 2nd and 3rd Order Results for a Second 2nd Order PLL Device

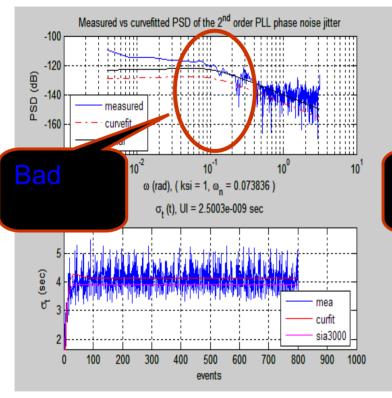


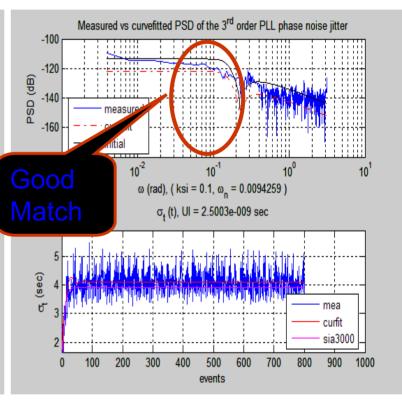


2nd Order Model Fit

3rd Order Model Fit

Case C: 2nd and 3rd Order Results for a 3rd Order PLL Device

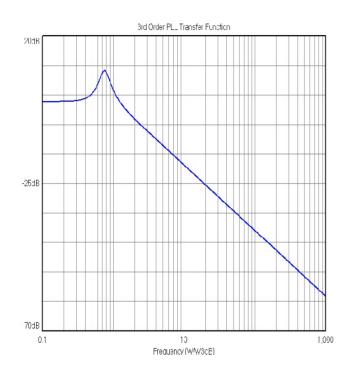


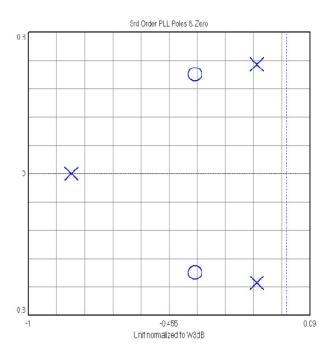


2nd Order Model Fit

3rd Order Model Fit

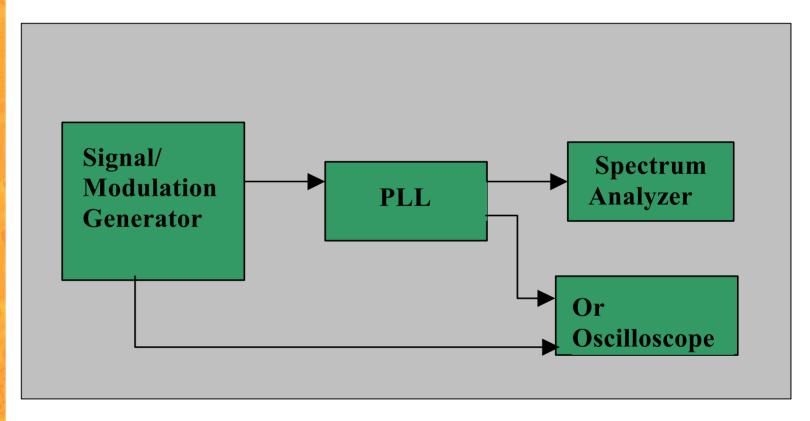
Case D: 2nd and 3rd Order Results for a Second 3rd Order PLL Device



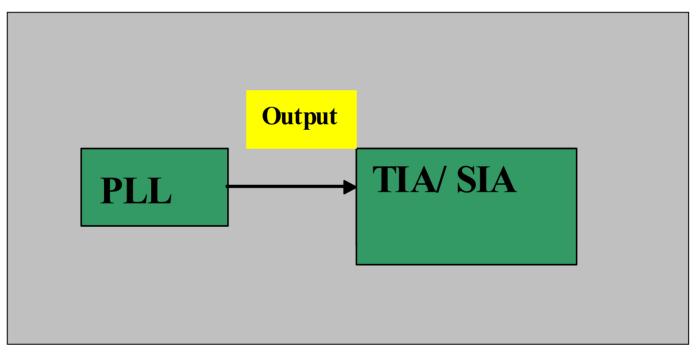


2nd Order Model Fit

3rd Order Model Fit


Additional Measurement Results for a 3rd Order PLL

Traditional PLL Transfer Function Measurement


Limitations for Traditional Methods

- Requires a modulation & signal source and subject to modulation frequency limitation
- Not suitable embedded PLLs
- Cannot accurately measure PLL transfer function above 20 MHz
- No separation of from transfer function
- It is slow
- Only gives the magnitude part

New PLL Transfer Function Measurement

No stimulus is required, fast!

Advantages of the New Method

- No modulation & signal source is required
- Well suited for embedded PLLs
- Measure transfer function from ~ Hz to Nyquist
- It is fast (a complete PLL measurement and analysis takes ~ seconds)
- Separate noise from transfer function
- A complete, plug&play, fast solution
- Complete s-domain transfer function, prediction/simulation enabling

Conclusions and Remarks

- Variance/autocorrelation function based PLL analysis method and 2nd order results are reviewed
- Third order PLL transfer function is derived and its performance is studied.
- A frequency domain based approach is proposed to achieve simultaneously measuring and analyzing PLL transfer function.
- The proposed method is scalable in terms of PLL order and thus backward compatible to the existing 2nd order case.
- The method warrants a great promising and generic method for analyzing 3rd or Nth order PLL jitter and transfer function with a great accuracy and throughput